
www.manaraa.com

Published version appears in J. ALGORITHMS 18 (1995), 432-479

Data Structures for Traveling Salesmen*

M. L. Fredman1

D. S. Johnson2

L. A. McGeoch3

G. Ostheimer4

Abstract
The choice of data structure for tour representation plays a critical role in the efficiency of

local improvement heuristics for the Traveling Salesman Problem. The tour data structure must
permit queries about the relative order of cities in the current tour and must allow sections of the
tour to be reversed. The traditional array-based representation of a tour permits the relative order
of cities to be determined in small constant time, but requires worst-case Ω(N) time (where N is
the number of cities) to implement a reversal, which renders it impractical for large instances.
This paper considers alternative tour data structures, examining them from both a theoretical and
experimental point of view. The first alternative we consider is a data structure based on splay
trees, where all queries and updates take amortized time O(logN). We show that this is close to
the best possible, because in the cell probe model of computation any data structure must take
worst-case amortized time Ω(logN /log logN) per operation. Empirically (for random Euclidean
instances), splay trees overcome their large constant-factor overhead and catch up to arrays by
N = 10 , 000, pulling ahead by a factor of 4-10 (depending on machine) when N = 100 , 000. Two
alternative tree-based data structures do even better in this range, however. Although both are
asymptotically inferior to the splay tree representation, the latter does not appear to pull even with
them until N ∼ 1 , 000 , 000.

1 Rutgers University, New Brunswick, NJ 08903, and University of California at San Diego, La Jolla, CA 92093
2 Room 2D-150, AT&T Bell Laboratories, Murray Hill, NJ 07974
3 Department of Mathematics and Computer Science, Amherst College, Amherst, MA 01002
4 Department of Mathematics, Rutgers University, New Brunswick, NJ 08903
* A preliminary version of this paper appeared under the same title in Proceedings 4th Ann. ACM-SIAM Symp. on Dis-
crete Algorithms (1993), 145-154.

www.manaraa.com

- 2 -

1. Introduction

In the Traveling Salesman Problem (TSP) we are given a set of cities c 1 ,c 2 ,... ,c N and

for each pair c i ,c j of distinct cities a distance d(c i ,c j). Our goal is to find a permuta-

tion π of the cities that minimizes the quantity Σi = 1
N − 1 d(c π(i) ,c π(i + 1)) + d(c π(N) ,c π(1)).

This quantity is referred to as the tour length, since it is the length of the tour a salesman

would make in visiting the cities in the order specified by the permutation, returning at

the end to the starting city. The TSP is one of the most widely known NP-hard problems.

Lawler et al. [21] give an excellent introduction to the broad range of work on this prob-

lem. In this paper, we concentrate on the symmetric TSP, where d(c i ,c j) = d(c j ,c i) for

1 ≤ i , j ≤ N.

Because the TSP is NP-hard, much research has concentrated on approximation

algorithms whose goal is to find near-optimal rather than optimal tours. In practice, the

best such algorithms have all been based on the principle of local optimization: One

obtains a starting tour using some tour-construction heuristic (such as the Greedy algo-

rithm [10]) and then repeatedly attempts to improve it using local modifications. The

most commonly used such modifications are 2- and 3-changes, as illustrated in Figures

1.1 and 1.2. Here for ease of explanation we view the tour in its alternative guise as a

Hamiltonian cycle in the complete graph whose vertices are the cities. The 2- and 3-

changes construct new Hamiltonian cycles by deleting and adding edges as shown. By

themselves, these operations give rise to the well-known 2-Opt and 3-Opt algorithms. In

more complicated combinations, they give rise to the famous Lin-Kernighan algorithm

[23] and provide the basic engines for most applications of simulated annealing

[5,17,19], genetic algorithms [4,25,26], and tabu search [11] to the TSP.

Two of the authors of the current paper have been involved in an extended study

[3,14] of the 2-Opt, 3-Opt, and Lin-Kernighan algorithms [22,23] and how they can be

adapted to very large instances. (Many applications give rise to instances with between

10,000 and 100,000 cities, and VLSI applications with as many as 1.2 million cities have

been cited [18].) Table 1.1 shows the current level of performance we have been able to

obtain with these algorithms for instances consisting of points uniformly distributed in

the unit square under the Euclidean metric. Here running times are in user cpu-seconds

on a 25 MHz MIPS processor running in a Silicon Graphics IRIS 4D/250 computer.

(MIPS is a trademark of MIPS, Inc., IRIS is a trademark of Silicon Graphics, Inc.) A

tour’s quality is measured by the percentage it exceeds the Held-Karp lower bound

[12,13,15] on optimal tour length. (For comparison purposes, note that the famous

www.manaraa.com

- 3 -

a b

c d

a b

c d

FIGURE 1.1. A 2-change.

(a) (b)

a b

c
de

f

a b

c
d

f

e

a b

c
d

f
e

(c)

FIGURE 1.2. Two possible 3-changes.

Christofides algorithm [6] only gets within 9-10% of the Held-Karp bound on such

instances and is significantly slower [3].)

1.1. The Tour Datatype

To obtain the performance reported in Table 1.1, we had to deal with a key implementa-

tion detail: how best to represent the current tour. The use of 2- and 3-changes is

simplified by requiring that the tour be oriented, meaning that each city has a successor

and predecessor in the tour. The labeling of tour neighbors must be consistent, in the

sense that it must be possible to start at one city and traverse the entire tour by moving

from each city to its successor. In the context of an algorithm based on 2- and 3-changes,

the Tour datatype must then support four basic operations.

_ __
Percent Excess Running Time in Seconds_ __

N 103 104 105 106 103 104 105 106
_ __

2-Opt 5.2 4.8 4.8 4.9 1.5 18 266 3060
3-Opt 2.9 2.9 2.9 2.9 1.9 22 318 3720

Lin-Kernighan 2.0 2.0 1.9 2.0 3.1 44 566 9550_ __ 































TABLE 1.1. Percent excess over Held-Karp bound and running time on a 25 Mhz R3000 MIPS processor.

www.manaraa.com

- 4 -

Next(a) This is a query that returns the city that follows a in the current tour.

Prev(a) This is a query that returns the city that precedes a in the current tour.

(It must be the case that Next(Prev(a)) = Prev(Next(a)) = a.)

Between(a ,b ,c) This is a query that returns true or false. Suppose one begins a forward

traversal of the tour at city a. The query returns true if and only if city b

is reached before city c.

Flip(a ,b ,c ,d) This updates the tour by replacing the edges (a ,b) and (c ,d) by the

edges (b ,c) and (a ,d). This operation assumes that a = Next(b) and

d = Next(c). The orientation of the updated tour is not specified.

Observe that Flip(a ,b ,c ,d) performs the same surgery as indicated in Figure 1.1,

and hence implements the 2-change operation. Note also that if we had let b = Next(a)

instead of vice versa, the indicated surgery would have resulted in two disjoint cycles

rather than a new tour. This in essence is why the Next and Prev queries are needed for

the datatype. The 3-change operation of Figure 1.2 can be implemented by a sequence of

two or three Flips, but as with the 2-change, one must obtain additional information if

one is to perform the correct sequence and prevent the creation of disjoint cycles. For

this the Between query is needed in addition to Next and Prev. (The much more compli-

cated ‘‘λ-changes’’ of the Lin-Kernighan algorithm can typically be expressed as a 3-

change followed by a sequence of 2-changes; λ-changes need no additional types of

queries.) One more observation, important in what follows: Performing Flip(a ,b ,c ,d)

changes the answers to Next and Prev for more cities than just a, b, c, and d. For either

the a – c or the d – b path, all internal vertices must have their values for Next and Prev

interchanged, since one of these two segments ends up reversed with respect to the other.

This path-reversal property can result in a major implementation bottleneck.

1.2. The Array Representation

Consider what is perhaps the most straightforward (and common) implementation of the

Tour datatype: the Array representation. Here the tour is represented by two one-

dimensional arrays of length N. Array A lists the cities in tour order, with

A[i + 1] = Next(A[i]), 1 ≤ i < N, and A[1] = Next(A[N]). Array B is the inverse of

array A, with A[B[i]] = c i , 1 ≤ i ≤ N. It is easy to see that for this representation, all

three types of queries can be answered in constant time. Unfortunately Flip will take

time proportional to the length of the segment that is reversed, which in the worst case is

Θ(N) even if one always reverses the shorter of the two segments. This worst-case

behavior is realized in practice for the theoretically interesting class of instances with

random distance matrices (i.e., instances with each d(c i ,c j) chosen independently and

www.manaraa.com

- 5 -

uniformly from the interval (0 , 1]). For these the average length of the shorter segment is

empirically N /4 (as one might expect). On the other hand, for more realistic instances,

the optimization of reversing the shorter path can reduce the average time per Flip to

o(N). For the above-mentioned random Euclidean instances, the length of the shorter

segment seems to grow roughly as N .7 [3], and similar behavior has been observed on

instances from the TSPLIB database of Euclidean instances derived from real-world

applications [27].

Despite these savings, the costs of tour manipulation grow to dominate overall run-

ning time as N increases. Table 1.2 illustrates this for our implementation of Lin-

Kernighan (which we shall treat mostly as a black box in what follows). We concentrate

on Lin-Kernighan not only because it constructs the best tours, but also because this is

where the effects show up earliest. For 3-Opt, the numbers of calls to Next, Prev, and

Between are roughly comparable to those given here, but the number of calls to Flip is

smaller by a factor of over 100, and so the expense of the latter operation, although

noticeable for N ≥ 105 , does not become a significant concern until N approaches 106

and more. The results here and in Section 3 are based on averages over 20 runs for each

of 5 instances of size 103 , over 12 runs for 3 instances of size 104 , and 9 or more runs for

a single instance of size 105 , yielding 95% confidence intervals for the computed means

µ that are typically [0. 96µ , 1. 04µ] or better. (The variances of the experimental values,

both between instances and between runs on the same instance, decline as N increases.

For instance, the estimated standard deviations for the numbers of Next/Prev queries are

14% of the reported means at N = 103 , 6% at N = 104 , and 3% at N = 105 . The stan-

dard deviations of the microseconds per Next/Prev query drop from roughly 27% to 10%

to 4%.)

_ __
N 103 104 105_ ___ __

Shorter Segment 39 170 864_ __
Number Next + Prev 160,000 1,600,000 15,700,000
of Between 21,800 199,000 1,960,000
Calls Flip 64,800 623,000 6,080,000_ __
µSec Next + Prev 0.8 1.2 1.9
per Between 1.3 1.8 2.4
Call 









Flip 16.5 77.0 898.6_ __
Total Seconds for Tour Ops 1.2 50 5500_ __

Percent of Total Time 34% 62% 92%_ __ 












































TABLE 1.2. Counts and times for Tour operations performed by the Lin-Kernighan
algorithm (Array representation).

www.manaraa.com

- 6 -

Note that, contrary to theory, the time for each Next/Prev and Between operation

appears to grow significantly with N, rather than remaining constant. Also, in going from

N = 10 , 000 to N = 100 , 000, the time per Flip grows by significantly more than the

average length of the shorter segment. This is likely an artifact of the RISC architecture

of the MIPS processor, whose speed depends in large part on the efficient use of its data

caches. Presumably the probability of a cache miss increases substantially as N gets

larger. We observed similar behavior on a RISC-based SPARCstation ELC (SPARC

and SPARCstation are trademarks of Sun Microsystems, Inc.), but not on the non-RISC

VAX 8550 (VAX is a trademark of Digital Equipment Corporation). For the latter, the

times per operation for Nexts/Prevs were 3.2, 3.5, 3.8 microseconds, and for Betweens

were 4.9, 5.6, 5.4, although the overall time for tour operations still grew to 90% by

N = 105 .

1.3. Outline of What Follows

In this paper we consider alternative Tour representations and the speedups they provide

in theory and in practice. In Section 2, we introduce three new Tour representations, all

designed to improve on the Array representation, and we analyze their worst-case behav-

ior. Asymptotically, the best of the three is the one based on splay trees [28], which has

an amortized worst-case running time of O(logN) per operation. The constants of pro-

portionality are high, however, leaving a surprisingly large window of opportunity for the

other two representations. Section 3 summarizes experiments aimed at obtaining a

detailed understanding of the empirical behavior of the various Tour representations and

of the crossover points between them. We also consider the effects of several practical

compromises and simplifications that one can make in implementing the representations,

changes that give up the precise asymptotic guarantees highlighted in Section 2, but that

may yield codes that are simpler and/or faster in practice. We performed our suite of

experiments on the three different computers mentioned above, and our search for con-

clusions is complicated by the fact that relative results differed substantially from

machine to machine. We can conclude, however, that although the Splay Tree represen-

tation easily beats Arrays by the time N = 10 , 000, it is not the representation of choice

for N ≤ 106 . It has gained substantially on the best of its competitors by the top of that

range, however, and it is clear that it will eventually dominate both.

In Section 4, we show that asymptotically, no significantly better representation

than Splay Trees can exist. We prove that in the cell probe model of computation, no

Tour representation can do better than a worst-case amortized time of

Ω(log N /log log N) per operation. This leaves a theoretical gap of a factor of log log N,

which we discuss in our concluding Section 5, along with other directions for further

www.manaraa.com

- 7 -

research. We also describe two proposed Tour representations from [7,24] that attain

O(logN) time per operation in a strict worst-case rather than an amortized worst-case

sense (and explain why they are unlikely to be competitive with splay trees in practice).

2. Three Alternative Tour Representations

2.1. The Splay Tree Representation

All the new representations we propose for the Tour datatype are based on trees. A natu-

ral first idea is to represent the tour by a binary search tree, with a city at each vertex

along with a special reversal bit that indicates whether the subtree rooted at that vertex

should be traversed in inorder, i.e., from left to right (reversal bit off) or in reversed

inorder, i.e., from right to left (reversal bit on). Reversal bits lower down in the tree can

then locally undo (or redo) the effect of bits higher up. See Figure 2.1, where vertices

with their reversal bits on are represented by double circles. A simple way to determine

the tour represented by a given tree is to push the reversal bits down the tree until they

disappear, as is done in the figure, at which point the tour can be read off the tree by a

simple inorder traversal of its vertices. (If a vertex v has its reversal bit on, one can

obtain an equivalent tree by turning the bit off, interchanging v’s left and right children,

and complementing the reversal bit for each child. We shall refer to this action as clear-

ing the reversal bit for v.)

The vertices of the binary search tree are stored in an array indexed by the cities, so

that given a city’s name, one can find the city in the tree in constant time. It is then not

too difficult to see how the three query operations can be implemented to run in worst-

case time proportional to the depth of the tree. With effort one can also implement Flip

to run in a similar time and keep the tree balanced, thus yielding worst-case time

O(logN) per operation [7]. We shall have more to say about this worst-case approach in

Section 5. Our Splay Tree representation settles for amortized worst-case time O(logN),

but benefits from programming simplicity and the ability to take advantage of locality of

C

A

B

D E F G

H I J

A

B

D E

H

C

F G

I J

A

B

E D

H

C

F G

I J

→ →

FIGURE 2.1. Three splay trees representing the tour (I ,F ,J,C ,G ,A ,E ,B ,H ,D).

www.manaraa.com

- 8 -

reference. (The idea of using splay trees is a natural one, and has been independently

proposed by several groups of researchers, for instance, Applegate and Cook [2].)

Splay trees were introduced by Sleator and Tarjan [28]. The key idea is that every

time a vertex is accessed, it is brought to the root (splayed) by a sequence of rotations

(local alterations of the tree that preserve the inorder traversal). Each rotation causes the

vertex that is accessed to move upward in the tree, until eventually it reaches the root.

The precise operation of a rotation depends on whether the vertex is the right or left child

of its parent and whether the parent is the right or left child of its own parent. The

change does not depend on any global properties of the subtrees involved, such as depth,

etc. See [28,29] for detailed descriptions.

Sleator and Tarjan [28] showed that all the standard binary tree operations could be

implemented to run in amortized worst-case time O(logN) using splays. In our Splay

Tree Tour representation, the process of splaying is made slightly more difficult by the

reversal bits. We handle these by preceding each rotation by a step that pushes the rever-

sal bits down out of the affected area. Neither the presence of the reversal bits nor the

time needed to clear them affects the amortized time bound for splaying by more than a

constant factor. The Tour operations are implemented as follows.

To compute Next(a), we begin by locating vertex a and splaying it to the root. We

then traverse down the tree (taking account of the reversal bits) to find a’s successor, and

then we splay the successor to the root. The cost of this procedure is clearly proportional

to the cost of the splays. The Prev(a) query is handled analogously.

To compute Between(a ,b ,c), we locate vertices b, a, and c and splay them to the

root one at a time, in that order. Note that, as described by Sleator and Tarjan, a splay

operation on a given city will not increase the depth of any other city by more than two.

This means that after splaying b, a and c, the depth of a is at most 2 and the depth of b is

at most 4. Thus it now requires only a simple (constant-bounded) case analysis to deter-

mine if b lies between a and c in forward cyclic order. Indeed, all we need do is locate b

in its new position in the tree and traverse up the tree until we encounter either a or c.

The answer to our query is yes if either the first to be encountered is a and we arrive from

the right, or the first encountered is c and we arrive from the left. Otherwise the answer

is no. (The proof of this relies on the fact that we have cleared all the relevant reversal

bits during the splay operations and, in the case where a is now a grandchild of c, on the

fact that by the nature of the basic splay rotations [28,29], a must either be the right child

of a right child or the left child of a left child.) The overall cost of the query is no more

than the cost of the splays plus a constant.

www.manaraa.com

- 9 -

T2
R

T2
R

b

d

T1

T3

T2

b

d

T1

T3

b

x

d

T1 T2

T3

T4

d

b

xT1

T2 T3

T4

b

d

T3T2

T1

b

T1
d

T3

b

d

x

T1

T2

T4

T3

b

x

d

T4

T2

T1

T3

FIGURE 2.2. The four possible cases for Flip in the Splay Tree representation.

The Flip operation is the most complicated. To perform the operation

Flip(a ,b ,c ,d), we begin by locating vertex d and splaying it to the root and then locating

and splaying vertex b. This leaves the tree in one of the configurations shown on the left

side of Figure 2.2, where the T i’s denote rooted subtrees. Because reversal bits were

cleared before the last rotation, neither b, d, nor the intermediate node x (if it exists) has

www.manaraa.com

- 10 -

its reversal bit on after the splays. The definition of Flip requires the reversal of either

the path forward from vertex d to vertex b or the path forward from a to c. In the first

two cases in Figure 2.2, vertex d precedes vertex b in the inorder traversal, and we can

flip the d – b path by doing the rearrangement shown. (Here Ti
R denotes subtree T i with

the reversal bit for its root complemented. As in Figure 2.1, vertices with their reversal

bits on are represented by double circles.) In the second two cases, vertex d follows ver-

tex b, and the a – c path is precisely the segment following b and preceding d. We can flip

this path by doing the rearrangement shown.

Bounding the cost of the Flip operation is more problematic than was bounding the

costs of the Next, Prev and Between queries, as this operation actually alters the tree by

operations other than splays. We shall thus have to go into more of the details of the

amortized time bound proof of [28]. That proof uses a potential function Φ, which is

always nonnegative. The value of this function is initially Θ(N). Thereafter, for each

splay operation the amount of work done plus the increase in Φ is bounded by

3 log N + 1. (Throughout this paper, all logarithms are assumed to have base 2.) That is,

if the potential function increases, it can increase by no more than the amount by which

3 log N + 1 exceeds the work actually performed. If the work performed exceeds

3 log N + 1, the potential function must drop by at least a corresponding amount. We

thus can view Φ(T) as the current balance in a back account. Each splay operation that

uses more than its quota of time can be viewed as drawing credits from the account to

cover the excess, using credits initially in the account or saved on previous operations.

At the end of any sequence of m operations, the total time spent on splay operations will

thus be at most m(3log N + 1) plus the initial potential. The initial potential is propor-

tional to the cost of constructing the initial tree, so that part of the total cost can be

assigned to the tree construction. The remaining cost can be spread among the m opera-

tions, so the amortized cost per operation is O(log N).

The function Φ is actually fairly simple. For each vertex v in the tree, let w(v) be

the number of vertices in the subtree rooted at v and rank(v) = log (w(v)). Then for a

given tree T,

Φ(T) =
v∈T
Σ rank(v) .

It is easy to see that if T is an N-vertex balanced binary tree, then Φ(T) = Θ(N) under

this definition. (The argument is essentially the same as the one used in [1] to show that

a heap can be constructed in linear time.) Furthermore, since no vertex can have rank

exceeding log N and no surgery on the tree can affect the rank of any vertex below the

www.manaraa.com

- 11 -

point of surgery, none of the changes we make to the tree as illustrated in Figure 2.2 can

increase the value of Φ by more than log N. The cost of the surgery itself is bounded by

a fixed constant B. If we charge log N + B for the surgery, this is enough to cover both

the actual cost and any change in potential. So the amortized cost of the surgery is

O(log N), just as it was for the splays. The amortized cost for a complete Flip is then

also O(log N), since the time needed is simply that for the surgery plus two splays and a

constant amount of overhead. We conclude that the amortized cost for any sequence of

Next, Prev, Between, and Flip operations in our Splay Tree representation will be

O(log N) per operation.

2.2. The Two-Level Tree Representation

The idea of using a tree with just two levels to represent the Tour datatype was suggested

by Tom Leighton [20], who observed that for N ≤ 106 , it might well be that c√ N with a

small c is better than dlogN where d represents the overhead factor for splay trees. (It

also occurred independently to Chrobak, Szmacha, and Krawczyk at about the same time

[7].) In particular, the Two-Level Tree representation is designed to take advantage of the

fact that our algorithm makes significantly more calls to Prev and Next than to Flip. All

the query operations are performed in constant time (as in the Array representation, albeit

with slightly larger constants), whereas Flip operations have a worst-case cost of O(√ N)

per flip.

The tour is divided into roughly √ N segments, each of length in the range

[√ N /2 , 2√ N]. Each segment is maintained as a doubly-linked list (using pointers

labeled previous and next). See Figure 2.3. All members of the segment also contain a

pointer to a parent node representing the entire segment. The parent node contains a

reversal bit to indicate whether the segment should be traversed in forward or reverse

direction. By using the reversal bit, we can reverse the orientation of a whole segment in

constant time, leading to an efficient approach to the Flip operation. In addition to the

next and previous pointers, each member of a segment contains the index of the city it

represents and a sequence number that gives its position within the segment, so as to

facilitate answering Between queries. (This numbering is consecutive within the seg-

ment, but need not start with 1.) The first vertex in the segment uses its previous pointer

to point to its tour neighbor that is not in the segment, and the last vertex uses its next

pointer similarly. Also, as in our Splay Tree representation, the structures representing

the cities actually reside in an array, so that the location of a city in the two-level tree can

be found in constant time by indexing on its name.

www.manaraa.com

- 12 -

The parent nodes of the segments are themselves connected in a doubly-linked list,

and each node contains a sequence number that represents its position in the list. (As

with the vertices on the lower level, the sequence numbers are consecutive but need not

start with 1.) Each parent also contains a count of the number of cities in the segment it

represents and pointers to the segment’s two endpoints. (As described here, the Two-

Level Tree representation is significantly more elaborate than those envisioned in [7,20],

which did not consider the issue of efficiently implementing the Between query or

attempt to reduce the constant bound on the time for Nexts and Prevs.)

The Tour operations are implemented as follows.

To compute Next(a), we begin by locating vertex a. We then follow the pointer to

a’s parent and look at its reversal bit. If the reversal bit is off, then Next(a) is found by

following a’s next pointer; otherwise it is found by following a’s previous pointer. This

operation takes constant time.

To compute Between(a ,b ,c), we locate the three vertices and their parents. If all

three parents are distinct, the answer can be determined from the sequence numbers of

the parents. If two or more of the vertices have the same parent (i.e. lie in the same seg-

Size

I.D.

Reverse?

End of SegmentBeginning of Segment

Next ParentPrevious Parent

Previous City

Parent

Next City

City

I.D.

Parent Structure Segment Element Structure

R
3
1

3
2

3
3

2 3 4-1 0 1
1 24 5

6
6 7 8

4
3

5
9

FIGURE 2.3. The Two-Level Tree Tour representation.

www.manaraa.com

- 13 -

ment), the answer depends on the sequence numbers within that segment and on the

parent’s reversal bit. (If all three vertices lie in the segment, the sequence numbers of all

three are significant; if only two lie in the segment, the location of the third is irrelevant.)

For example, suppose that a and b lie in the same segment, c lies in some other segment,

and that a has a lower sequence number than b within their common segment. If the

reversal bit of the parent is off, then the answer is true, because b follows a within the

segment and therefore b precedes c in a forward traversal from a. If the reversal bit is on,

then a follows b within the segment and the result is false. The other cases are similarly

straightforward, but there are quite a few of them, and so this implementation of Between

is somewhat more expensive than the simple test used in the Array representation. The

worst-case time is still bounded by a constant, however.

The Flip(a ,b ,c ,d) operation is the most complicated. The two simplest cases are

when the path to be flipped lies entirely in one segment or when it is made up entirely of

complete segments. First suppose that either the d – b path or the a – c path lies within one

segment of the two-level tree. In this case we do the flip locally within the segment con-

taining the path. The next and previous pointers are swapped within each internal vertex

of the path to be flipped, and appropriate changes are also made to the pointers in the path

endpoints and in their non-path neighbors. The total time is proportional to the length of

the path and hence O(√ N).

Suppose next that the d – b and a – c paths each consist of a sequence of consecutive

segments. (Either both must, or neither.) In this case a and b must lie in distinct seg-

ments, as must c and d. The problem is thus reduced to that of reversing a sequence of

segments. Either path may be flipped, and one can use the sequence numbers of the par-

ent nodes of a, b, c, and d to choose the path that involves the smaller number of seg-

ments. The actual flip involves (1) reversing the next and previous pointers in each inter-

nal parent node along the path, (2) making appropriate changes to the pointers in the first

and last parent nodes in the path and in their non-path neighbors, (3) flipping the reversal

bit of each affected parent node, (4) appropriately adjusting the next and previous point-

ers for the cities at the ends of the two paths, and (5) updating the sequence numbers of

the affected parent nodes. The total time is proportional to the number of segments in the

path and hence is O(√ N).

If neither of the above two cases apply, we can rearrange the segments to ensure that

the second case does. At least one of the pairs (b ,a), (c ,d) must lie within a single seg-

ment of the two-level tree. Suppose that b and a do. Since they are tour neighbors, they

are also neighbors within the segment, so we can split the segment between b and a, cre-

ating two new segments, at a cost proportional to the length of the shorter of the two new

www.manaraa.com

- 14 -

segments. (We create a new parent node and make it the parent of this shorter segment,

leaving the members of the longer segment with their original parent.) If c and d also lie

within a single segment, we similarly split that segment between c and d. Given the

upper bound on the sizes of the segments before splitting, the total time for splitting is

O(√ N). We are now back to the situation where both paths are composed entirely of

complete segments, and we already know how to handle this, again in time O(√ N)

because of the bound on the total number of segments.

At this point, our two-level tree may have become unbalanced and the top sequence

numbers may have been corrupted. This can all be fixed with an additional O(√ N) work

as follows: First, we consider in turn each of the (possibly 4) newly created segments. If

the size of that segment is less than √ N /2, we merge it into its smaller neighboring seg-

ment in time proportional to its length. At the end of this merging process all segments

will be of size at least √ N /2, but we may now have one of the merged segments larger

than 2√ N . If any such large segment has been created, it can be no larger than 3√ N , the

worst case being when components almost as large as √ N /2 were merged into it from

both sides. If we split it in half, we will thus obtain a two components of size between

√ N and 1. 5√ N , which will be within our required range. The splitting process will take

time O(√ N), and then all that remains is a pass over the entire set of parent nodes to fix

up their sequence numbers, again an O(√ N) operation.

Thus the worst-case time for each operation is O(√ N). This worst-case bound is

attained at a cost of considerable overhead in the rebalancing operations, however. Given

the conventional wisdom that data structures often stay roughly balanced in practice, it

might be worthwhile first to consider variants on this representation that give up the

worst-case guarantees in exchange for lower overhead, and only implement full-scale

rebalancing should it be seen to be necessary. Given that our main goal in this study was

to find representations that worked well in practice, this is the approach we have taken.

(As we shall see, it turns out that thorough rebalancing is not necessary in practice.)

Here is how our implementation differs from the idealized one given above. Rather

than rebalance as indicated above, we simply maintain a fixed number of segments, cho-

sen so that the average segment size is close to a specified number groupsize of cities.

When we have to split a group in the course of doing a flip, we immediately (before

flipping) merge the smaller half with its neighboring segment, thus keeping the number

of groups fixed. Note that this raises the possibility that, as a result of the merge, one of

our two choices of a path to flip may now be entirely contained in the new merged seg-

ment, in which case we can perform the flip entirely within that segment.

www.manaraa.com

- 15 -

Our action when one of the paths to be flipped is entirely contained within a single

segment is also more complicated than in the original plan. (The added complication is

for the purpose both of saving work and of obtaining a bit of implicit rebalancing.) If the

path to be flipped is of length no more than (3/4) groupsize we proceed as before. If it is

longer, however, we first split off the two ends of the segment so that all that is left is the

path, and we then merge the split off parts with their neighboring segments. This reduces

us to a trivial instance of the case where the path to be flipped consists entirely of com-

plete segments (in this case just one such segment), and we proceed as in that case. Note

that, assuming our tree is relatively well-balanced, the cost of this alternative should not

be too much more than performing the reversal without doing the splits, and it may be

much less. Moreover, we may get a bit of rebalancing as a side-effect, since overly long

segments should be more likely to completely contain paths and thus be eligible for split-

ting. Despite this implicit rebalancing, however, there is no guarantee that a few seg-

ments might not grow very large, causing Flip operations to take Ω(N) time. Thus we

have indeed given up our O(√ N) worst-case guarantee, and the question to be consid-

ered is whether we will pay the price in practice.

2.3. The Segment Tree Representation

The idea of a Segment Tree representation was first proposed by David Applegate and

Bill Cook [2] to exploit a feature of the Lin-Kernighan algorithm. In the inner loop of

this algorithm, a sequence of tentative Flips is applied to the current best tour (the perma-

nent tour), with the hope of finding an improved tour. If a shorter tour is found, an initial

substring of the tentative Flips is applied to the permanent tour, otherwise they are all

discarded. In general there are many more tentative Flips than permanent ones. The

Tour representations discussed so far do not take advantage of the distinction between

tentative and permanent Flips; they perform all Flips, both tentative and permanent, in

the structure they use to represent the permanent tour. In order to discard a sequence of

tentative Flips, these implementations perform a second (reverse) sequence of Flips that

step-by-step undoes the effects of the first sequence.

One advantage of the Segment Tree representation is that it avoids this work of

undoing tentative flips. A second advantage comes if one imposes a fixed bound on the

allowed length of a sequence of tentative Flips. As defined in [23], the pure Lin-

Kernighan algorithm imposes only an implicit bound of N on the number of tentative

flips in a sequence. Imposing a fixed bound typically does not have a significant effect

on the length of the output tour, however, so long as the bound is relatively large, say 50,

as in the Applegate-Cook implementation [2]. (For the random Euclidean instances

profiled in Table 1.2, only about 0.6% of the improving moves found when no bound was

www.manaraa.com

- 16 -

imposed involved sequences of more than 50 tentative Flips; the average improving

move involved just four or five Flips.) Imposing a fixed bound on the number of tenta-

tive Flips in a sequence gives a benefit to the Segment Tree representation, because under

this constraint Segment Trees can implement those tentative Flips at a cost of O(1) per

operation. There is a drawback, in that the cost of permanent Flips increases to Ω(N),

but in practice there are far more of the former than the latter. (For our random

Euclidean instances, the number of permanent Flips grows roughly as 0. 6N, compared to

a growth rate of roughly 30N for the tentative ones.)

Here are the details: Our Segment Tree representation is a hybrid, using our stan-

dard Array representation for the permanent tour and an auxiliary segment tree and seg-

ment list to keep track of the ‘‘tentative’’ tour derived from the current sequence of tenta-

tive Flips. (See Figure 2.4.) Each vertex of the segment tree corresponds to a segment of

the permanent tour, identified with a closed interval of positions in that tour, for instance

[j ,k], 1 ≤ j ≤ k ≤ N. The indices j and k are stored in the structure representing the ver-

tex. The segment tree is structured so that an inorder traversal gives the segments in the

order in which they occur in the permanent tour. The segment list is a doubly-linked list,

each member of which corresponds to one of the segments and contains the indices of the

segment’s endpoints as well as a reversal bit. The representative of a segment in the seg-

ment tree contains a pointer to the representative in the segment list. (Alternatively, we

can have a single structure as the segment’s representative, one that contains both tree

and list pointers, although conceptually it is easier to think of the representation with the

two structures separate, as in Figure 2.4.) The tentative tour is derived from the segment

list in the obvious way: one goes through the segments in the order they occur in the list,

with the direction of traversal through an individual segment determined by its reversal

bit.

As with our other representations, we need a way to find a given city in the repre-

sentation of the tentative tour. This is made more complicated here since our representa-

tion does not contain objects that correspond to individual cities. Thus we need to look

for the segment that contains the city, not the city itself, and the identity of this segment

is subject to change. The purpose of the segment tree is to facilitate this search. We first

look up the city in the array B of the Array representation for the permanent tour, which

gives the city’s index in the permanent tour. We then traverse downward from the root

of the segment tree until we find the segment containing the index of the desired city.

The time required is no more than the total number of segments, which as we shall see is

bounded by 2K + 1 (where K is the maximum length allowed for a sequence of tentative

flips) and therefore is bounded by a constant (albeit a large one) when K = 50. As we

www.manaraa.com

- 17 -

Treenode Structure Segment Structure

Segment
Left Neighbor Right Neighbor

Previous Segment Next SegmentFirst Index

Reverse?

Last Index

First Index

Last Index

R R
1

12
37
45

13
20

21
36

46
50

50
46

37
45

36
21

1
12

13
20

FIGURE 2.4. The Segment Tree Tour representation.

shall see later, the time for a search can be considerably reduced in an amortized sense by

using an auxiliary data structure.

We shall now discuss how the Segment Tree representation works. Our discussion

has three parts. First we describe how the segment tree and list are initialized each time

we begin a new sequence of tentative flips. Then we describe how the various operations

are implemented when they are applied to the tentative tour. Finally, we describe how

we update the permanent tour when a permanent change is required.

To prepare for a new sequence of tentative flips, we simply create a tree consisting

of a single root vertex that represents the segment [1 ,N] (the entire tour). The corre-

sponding (single) member of the doubly-linked list has its reversal bit off and is its own

successor and predecessor. This takes constant time.

www.manaraa.com

- 18 -

To compute Next(a) (or Prev(a)) for a given city a, we first find the tree node for

the segment currently containing that city. We then go to the corresponding member of

the linked list of segments and take note of the reversal bit for that segment and the

indices of its endpoints. Suppose that city a’s index in the permanent tour is B[a] = i,

and its current segment is [j ,k]. If the reversal bit for the segment is off and i < k,

Next(a) = A[i + 1], the city following a in the current tour; if the reversal bit is on and

i > j and Next(a) = A[i − 1]. If the reversal bit is off and i = k, then we must look at the

next segment, taking its left endpoint to be Next(a) if that segment’s reversal bit is off,

and otherwise taking its right endpoint. If the reversal bit is on and i = j, we must look

at the previous segment and proceed analogously. The answers to Prev(a) are deter-

mined similarly. The time in all cases is constant, although a bigger constant than that

for Arrays or Two-Level Trees.

In our implementation of Lin-Kernighan, the Between(a ,b ,c) operation is only

applied to the permanent tour, and so in the Segment Tree representation it has the same

implementation as it did in the Array representation. It thus takes time O(1).

To perform Flip(a ,b ,c ,d) in the tentative tour, we locate the tree nodes for each of

the cities involved. If a and b lie in the same segment, we split the segment between

them so that they lie in adjacent segments of the tentative tour. In particular, suppose the

segment was [j ,k] and the indices for a and b were i and i + 1. (They must be consecu-

tive since the two cities are tour neighbors.) The new segments are [j ,i] and [i + 1 ,k].

The member of the doubly-linked list for [j ,k] is replaced by the two new members, with

reversal bits inherited and with the two segments themselves ordered according to the

original reversal bit. The vertex of the tree for [j ,k] is replaced by the vertex for the

larger of the two subsegments. If that segment is [j ,i], then the new vertex created for

[i + 1 ,k] becomes its right child and has for its right child the original right child of

[j ,k]. Otherwise [i + 1 ,k] replaces [j ,k] and [j ,i] becomes its left child, inheriting the

left child of [j ,k]. The split takes only constant time. Similarly we force c and d into

separate segments if they aren’t already. After these splits, the paths d – b and a – c do not

share any segments. We then reverse the order of segments in the segment list for one of

these paths. The order of cities within the affected segments is reversed by flipping the

reversal bits on the corresponding segment list nodes.

Note that each Flip operation creates at most two new segments, and so, as claimed,

the total number of segments can never grow to more than 2K + 1, where K is a bound on

the number of tentative Flips that can be performed in a sequence. Thus the worst-case

time to perform a Flip is also O(1).

www.manaraa.com

- 19 -

Let us now explain how we can speed up the process of finding a city in the segment

tree. We use an additional array of location pointers, one for each city. Initially, before

a sequence of tentative flips begins, all location pointers are set to the single vertex repre-

senting [1 ,N] at the root of the segment tree. (We use a time-stamping procedure so as

to avoid having to initialize all the pointers individually. By default any location pointer

points to the root unless it was reset more recently than the last initialization.) Whenever

we look for a city in the tree, we start at the vertex to which its location pointer points. If

the corresponding segment still contains our city, we are done; otherwise we traverse

downwards until we find the vertex for the segment currently containing the city, and set

the location pointer to point at this vertex. (Our vertex-splitting procedure insures that a

vertex’s current segment is always in the subtree rooted at the vertex that represented its

previous segment.) Thus the total time spent on searches for a given city during a

sequence of tentative flips is at most proportional to K plus the number of searches made

for that city. This amortizes the O(K) cost over the entire sequence of searches rather

than charging it to each search individually.

We now discuss what is to be done when a sequence of tentative Flips has been

completed. If an initial substring of this sequence yielded an improving move, we need

to update the arrays representing the permanent tour. We shall call this the MakePerma-

nent operation. Typically, we implement this by re-enacting the relevant sequence of

Flips, this time by using the Flip operation in our Array representation, a process that in

the worst case can take time Θ(KN). Applegate and Cook [2] implemented an alterna-

tive method that would be preferable if a large number of Flips were required or if the

instances were such that Flips came close to their worst-case time bounds. Their idea is

simply to undo all the tentative flips that follow the improving initial substring, a process

that takes time at most O(K 2) = O(1), and then to read off the new permanent tour

directly from the segment list in time Θ(N).

3. Experimental Comparisons

3.1. Implementation Details

We have implemented the three alternative Tour representations (along with the original

Array representation) in the C programming language. Our experiments were performed

under variants of the UNIX operating system (UNIX is a trademark of Unix Systems

Laboratories, Inc.) on three different machines. The first (and slowest) was a DEC VAX

8550 computer with 128 megabytes of main memory. The second was a SPARCstation

ELC with 64 megabytes of main memory. The third was a Silicon Graphics IRIS 4D/250

computer with 256 megabytes of main memory and a 25 MHz R3000 MIPS processor as

www.manaraa.com

- 20 -

CPU. Roughly 24 megabytes of memory were required to run a 100,000-city instance

without excessive paging. Instances with 1,000,000 cities required roughly 244 mega-

bytes, and hence were only run on the IRIS. Times reported here are user times and do

not include time spent in paging, except insofar as that time leaks into the figures the

machine reports as user time. (Such leakage did occur for our million-city instances

when other large jobs were sharing the machine, so the million-city experiments were

performed when we were essentially the only user of the machine.)

The Tour representations were plugged into our Lin-Kernighan code via a standard-

ized interface that included calls to the four standard Tour operations, augmented to

include necessary calls such as Initialize and OutputTour, along with other calls that

allow us to treat permanent and tentative changes differently (as required by the Segment

Tree representation). The code performs its own profiling, using the UNIX system com-

mand profil(2), which allows us to obtain consistent profiling results across differ-

ent machines. (This profiling does not exact a significant penalty on running times.)

Compilation was done using the -O optimization flag on all machines, although since

each machine had a different compiler, the extent of optimization differed from machine

to machine.

Before presenting our experimental comparisons, we must first say a few more

words about the actual implementations, since certain key details were left open in the

previous section. In deciding on these details for each representation, we were guided by

the goal of determining how well the representation could do ‘‘in practice’’ for instances

with N in the range covered by our study. Thus decisions that could be justified by our

asymptotic analysis were sometimes abandoned if they appeared to have no practical

impact (or a negative one) on instances of the size and type being considered. We were

able, however, to gain some insight into how large N must be for asymptotic effects to

become visible, and we will discuss this issue as well.

The Segment Tree representation is of course an embodiment of this approach, since

asymptotically it can be as bad as Arrays (and the results we shall present indicate that

asymptopia has already begun to set in by N = 1 , 000 , 000). There are two details that

were left open in the previous section, however. First the lesser one: we mentioned in

Section 2 that we could either have two representatives for each segment, one in the seg-

ment tree and one in the segment list, with a pointer from the first to the second (as in

Figure 2.4), or we could have one common structure for the segment, containing both the

tree and list pointers and not duplicating the other information. The latter approach is

more space-efficient and should in principle be slightly faster, as we would no longer

have to manipulate the pointer linking the two representations. Based on limited experi-

www.manaraa.com

- 21 -

mentation, however, the speedup is negligible, so the results we report should not depend

on which approach was taken. (They were in fact generated using the former approach.

The extra space required was not a handicap on our machines, and we did not get around

to testing the latter until the main experiments were completed.)

The second choice we had to make in our Segment Tree implementation was the

method for performing the MakePermanent operation. For random Euclidean instances,

our implementation makes changes in the permanent tour by performing Flips in that

tour’s representation, rather than by rebuilding that representation from scratch based on

the tentative tour’s segment list, the other method we discussed in Section 2. This choice

is based on (1) our earlier observation that the actual number of Flips performed averages

about 5, (2) the fact that the time for a Flip tends to grow as o(N) for instances of this

type, and (3) the fact that the alternative method always takes time Θ(N). We experi-

mented with the hybrid method mentioned in Section 2, where one uses the Flip-based

approach so long as the number of Flips to be performed is below a threshold and other-

wise takes the Θ(N) approach. For these instances, however, performance was degraded

unless the threshold was set so high that the second option practically never occurred.

As already mentioned in Section 2, our Two-Level Tree implementation also has the

potential of being as bad as the Array representation, for we have chosen to forego the

overhead of explicitly rebalancing the segments, thus giving up the asymptotic worst-

case guarantee of O(√ N) time per operation. Instead, we simply maintain a fixed num-

ber of segments that we hope (but cannot guarantee) will stay reasonably balanced. The

main detail to be specified here is the value of groupsize, the average size of a segment.

In initial experiments, we were surprised to discover how insensitive our results were to

the actual value of groupsize, at least for N ≤ 100 , 000. For instance, roughly the same

overall running times for Tour operations were obtained for values of groupsize ranging

from 40 to 120, and only when groupsize was as large as 200 was real performance

degradation noticeable. For simplicity, we thus fixed groupsize at 100 for all instances

with N ≤ 100 , 000. For N = 1 , 000 , 000, however, groupsize = 100 was clearly too small,

and the time per Flip was reduced by 27% when we increased groupsize to 200, which is

the value used for N = 106 in the table. (Further increases in groupsize did not offer

significant improvements, with performance remaining relatively stable for values up to

800.)

It would be nice if, given N, we could predict the optimal value for groupsize, but

the observed insensitivity suggests that our trial-and-error approach is the best that can

currently be hoped for. We did compile statistics on the average number of vertices

touched per flip on the top and bottom levels of the trees, and these varied in predictable

www.manaraa.com

- 22 -

ways with groupsize. (The value for the top level, for instance, roughly tracking the

number N / groupsize of segments.) Actual performance was relatively insensitive to

these values, however, beyond the fact that it appeared to be a bad idea to let either value

be a large multiple of the other (say 3 or more).

Our biggest compromises involved the Splay Tree representation, with many of the

results we report being for a version that differed significantly from the theoretical model

presented in Section 2. In particular, no splays were performed in the Next and Prev

operations under the Splay Tree representation; a simple traversal scheme was used

instead. For instance, to compute Next(a) we first find a in the tree and then walk up the

tree to the root keeping track of reversal bits so as to discover the direction of the tour at

city a. We then traverse in the appropriate direction from a to find a’s successor. We

thus replace the splay of a by a (significantly faster) traversal and omit the splay of

Next(a) entirely. In addition, Between was implemented with the first splay, that of city

b, omitted. (The remaining two splays in the Between implementation described in Sec-

tion 2 are crucial to its operation and could not be omitted, as are the two splays in our

implementation of Flip.)

For the range of N being studied here, it turns out that the extra overhead involved

in splaying (versus a simple traversal, or nothing at all) is substantial, and the resulting

rebalancing of the tree does not justify the cost. The nature of the speedups due to fore-

going splay operations is revealed in Table 3.1, which gives profiling information on the

IRIS 4D/250 for four different versions of the implementation on the random Euclidean

instances discussed in Section 1. Splay Tree-3 performs all the splays specified in Sec-

tion 2, Splay Tree-2 omits only the splay of city b in Between(a ,b ,c), Splay Tree-1 omits

in addition the splays of the cities Next(a) and Prev(a) in Next and Prev queries, and

Splay Tree-0 in addition omits the splay of a in those operations.

Observe that each removal of a splaying operation yields a decrease in the total time

for Tour operations, with the operation from which the splay was removed benefiting the

most. For instance, the cost per Between operation drops by roughly 30% when the splay

of city b is omitted. The cost per Next/Prev at N = 100 , 000 drops by 10% when the splay

on the result is omitted, and by more than 30% when the splay on a is replaced by a

traversal. It is perhaps surprising that the latter change has more of an effect than the for-

mer. A major reason is that the splay on the result can be (and was) much more

efficiently implemented than the splay on a, and so there is less to save by omitting it.

For instance, while we are searching down the tree for Next(a) we can clear reversal bits

as we go down. This is more efficient than clearing them during the splay rotations on

the way back up, as a bit cleared during one rotation may be reset during the next. Fur-

www.manaraa.com

- 23 -

_ ___
µSec per Call Total Seconds_ ___

N 103 104 105 103 104 105_ __ ___
Splay Tree-3: Next + Prev 10.6 13.3 16.8 1.8 21.4 262

Between 17.3 19.4 22.7 0.4 3.9 44
Flip 11.4 12.3 13.7 0.8 7.7 83_ ___

Total 3.0 33.0 389_ __ ___
Splay Tree-2: Next + Prev 10.6 13.4 17.3 1.7 21.4 268

Between 12.5 13.7 16.0 0.3 2.7 31
Flip 11.4 12.5 13.7 0.7 7.8 83_ ___

Total 2.7 31.9 382_ __ ___
Splay Tree-1: Next + Prev 10.0 12.5 15.4 1.6 20.3 242

Between 11.8 13.8 15.0 0.3 2.8 30
Flip 10.5 11.4 12.2 0.7 7.2 74_ ___

Total 2.6 30.3 346_ __ ___
Splay Tree-0: Next + Prev 5.2 7.6 10.5 0.8 12.3 169

Between 13.4 17.6 23.8 0.3 3.6 47
Flip 10.5 11.7 13.3 0.7 7.4 82_ ___

Total 1.8 23.2 298_ ___ 







































































































TABLE 3.1. Times on an IRIS 4D/250 for various Splay Tree implementations of the
Tour operations performed by the Lin-Kernighan algorithm.

thermore, clearing the bits on the way down will typically leave the city Next(a) as the

last in a long sequence of left children of the right child of a, and so in splaying Next(a)

up the tree we can in each rotation omit the tests for the local structure of the tree.

It should be pointed out, however, that the omission of the splays in one operation

can have a negative impact on the other operations. For instance, omitting the splay in

Between causes the Next / Prev operations to slow down slightly. Omitting the splay on a

in Next(a) and Prev(a) causes the time for Between to increase greatly. This is due not

so much to the rebalancing effect of the splays as to the fact that they enhance the ability

of the Tour representation to take advantage of locality of reference. Typically when we

invoke Between(a ,b ,c), we have recently performed one or more Next and Prev opera-

tions in which a, b, or c was involved. Thus if they were splayed to the top of the tree

during the Next/Prevs, they will still be near the top of the tree when Between(a ,b ,c) is

invoked. This is illustrated in Figure 3.1, which reports the average depth at which the

relevant vertices are encountered in the tree as a function of the operation and of the

number of cities under Splay Tree-0 (the dashed lines) and Splay Tree-2 (the solid lines),

with N, B, F representing Next/Prev, Between and Flip operations respectively.

www.manaraa.com

- 24 -

NUMBER OF CITIES

D
E
P
T
H

103 104 105 106

2

3

4

5

F
F F

F

B

B

B

B

N

N

N

N

F
F F F

B B B
B

N

N

N
N

FIGURE 3.1. Growth rates for the depth of cities.

Note that even when no splaying is done on Next and Prev, the growth in the depth

still seems to be O(log N), which is the worst case when splaying is performed. Under

(almost) full splaying (Splay Tree-2) the exploitation of locality of reference is so strong

that the average depths are essentially constant from 1,000 to 1,000,000 cities. (The only

difference for Splay Tree-3 would be that the line for Between would be higher and the

one for Next / Prev would be slightly lower.) The average depths for Flips under

Splay Tree-0 is less than that under Splay Tree-2 because typically most Flips are

restricted to the same small key set of endpoints, and performing splays on Next / Prevs

often splays non-key cities to the top of the tree, thus pushing the key cities further down

in the tree. The advantage of Splay Tree-0 on Flips, however, will eventually be domi-

nated by its growing disadvantage on the more frequently invoked Nexts and Prevs.

3.2. Comparisons on Random Euclidean Instances

We are now ready to look at our data comparing the Splay Tree representation and its

competitors. We begin with the random Euclidean instances described in Section 1. In

Tables 3.2 through 3.4, we summarize the profiling information on our three machines

for the Array, Splay Tree-0, Two-Level Tree, and Segment Tree representations.

www.manaraa.com

- 25 -

_ ___
µSec per Call Total Seconds_ ___

N 103 104 105 106 103 104 105 106_ __ ___
Array:

Next + Prev 0.8 1.2 1.9 0.1 1.9 29
Between 1.3 1.8 2.4 0.0 0.4 5

Flip 16.5 77.0 898.6 1.1 48.0 5466_ ___
Total 1.2 50.3 5501_ __ ___

Splay Tree-0:
Next + Prev 5.2 7.6 10.5 16.2 0.8 12.3 169 2574

Between 13.4 17.6 23.8 31.5 0.3 3.6 47 609
Flip 10.5 11.7 13.3 15.3 0.7 7.4 82 925_ ___

Total 1.8 23.2 298 4108_ __ ___
Two-Level Tree:

Next + Prev 1.0 1.9 2.2 3.9 0.2 3.2 37 637
Between 2.3 3.3 3.5 4.6 0.1 0.7 7 89

Flip 10.2 14.5 21.5 54.1 0.7 9.1 132 3256_ ___
Total 0.9 13.0 175 3983_ __ ___

Segment Tree:
Next + Prev 3.2 3.8 4.4 5.1 0.5 6.0 66 748

Between 1.3 1.9 2.5 2.8 0.0 0.4 5 55
Tentative Flip 14.0 15.0 15.8 16.2 0.5 4.8 49 487

MakePermanent 92.7 584.9 7776.4 60550.5 0.0 1.1 134 10290_ ___
Total 1.0 12.3 254 11580_ ___ 




































































































































TABLE 3.2. Times on an IRIS 4D/250 for Tour operations.

Let us begin by looking at the results for the IRIS (Table 3.2) and then consider how

the results for the other machines differ. Note that on the IRIS the Array representation

as expected has the most efficient implementation of Next / Prev, although Two-Level

Trees are close. Even without splaying on Next and Prev, our Splay Tree-0 implementa-

tion is by far the worst for these operations (as it is for Betweens, where Arrays are again

the winner). For Flips, on the other hand, Splay Trees show their expected dominance

over Arrays and Two-Level Trees, and indeed the times for their Flips even beat out the

times for tentative Flips in Segment Trees, which theoretically are O(1) and hence

should asymptotically be faster. (Theory, however, does not take into account the great

benefit we obtain for Flip under Splay Tree-0 from locality of reference, as illustrated in

Figure 3.1.) Indeed, in the Splay Tree representation Flips are even less expensive than

Betweens (a fact that held true for all four alternatives in Table 3.1). One other remark

about Flips concerns the Two-Level Tree results. Note that despite the lack of explicit

www.manaraa.com

- 26 -

rebalancing in our implementation of this representation, the time per Flip is still grow-

ing more slowly than √ N for N ≤ 106 .

Another observation is that the MakePermanent operation for Segment Trees is

even worse than expected. The time per operation is growing at a superlinear rate

(although the number of calls is so small that the effect on overall running time is effec-

tively masked until N > 10 , 000). This is because of the phenomenon, already observed

in Section 1, that the MIPS processor of our IRIS 4D/250 has rapidly degrading perfor-

mance for Flips in the Array representation as N gets large, presumably because of an

increasing percentage of cache misses. (This phenomenon hits the alternative Θ(N)

rebuild-from-scratch method even harder, however, so that updating the permanent tour

using Flips is still to be preferred.) Nevertheless, Segment Trees are reasonably competi-

tive with Two-Level Trees in the total time spent on Tour operations when N ≤ 10 , 000.

We should also note that the -O optimization compile flag on the IRIS was crucial to the

dominance of Two-Level Trees over Segment Trees when N ≤ 100 , 000. Compiling

without optimization degrades the performance of Two-Level Trees much more than it

does the performance of Segment Trees, and their ranking reverses in this case. As our

profiling information makes clear, however, the growing cost of the MakePermanent

operation is likely to doom the Segment Tree representation as N increases substantially

beyond 100,000, no matter what optimization flags we use.

Neither of our two other machines had enough memory to run our million-city

instance, so their tables only go up to N = 100 , 000. Perhaps the most interesting thing to

note about the VAX results (Table 3.3) is that the times per Next/Prev, Between, and Flip

in the Segment Tree representation all appear to be essentially constant as N increases,

perhaps because of the VAX’s much more limited reliance on caches. Note that the time

for Flips in the Splay Tree representation also seem to be essentially constant. This is

inconsistent with theory, but it mirrors our experimental results on splay depth (Figure

3.1) more closely than do our results for the other two (faster) machines. One anomaly

for which we have no good explanation is the fact that on this machine Betweens are con-

sistently more expensive for Segment Trees than they are for Arrays, even though our

Segment Tree and Array representations share the same code for implementing this oper-

ation. (This phenomenon does not appear to occur on the other two machines, where the

differences between times for Betweens seem more to be the results of random fluctua-

tions.)

Finally we should note that while both Two-Level Trees and Segment Trees do

significantly better than Splay Trees in overall Tour operation time, here Segment Trees

significantly outperform Two-Level Trees at N = 100 , 000, a reversal of the situation on

www.manaraa.com

- 27 -

_ __
µSec per Call Total Seconds_ __

N 103 104 105 103 104 105_ ___ __
Array: Next + Prev 3.3 3.5 3.8 0.5 5.8 62

Between 4.9 5.6 5.4 0.1 1.2 11
Flip 51.0 214.5 1347.8 3.4 137.7 8353_ __

Total 4.0 144.7 8426_ ___ __
Splay Tree-0: Next + Prev 25.9 33.1 34.9 4.0 52.5 513

Between 50.2 57.9 64.9 1.1 12.2 132
Flip 36.7 40.0 40.0 2.4 25.6 243_ __

Total 7.5 90.3 888_ ___ __
Two-Level Tree: Next + Prev 4.6 5.0 5.5 0.8 8.4 91

Between 10.8 11.6 12.3 0.3 2.3 24
Flip 43.6 49.4 70.5 2.9 30.8 431_ __

Total 4.0 41.5 546_ ___ __
Segment Tree: Next + Prev 13.0 12.8 12.7 2.1 19.6 195

Between 6.1 6.3 6.5 0.1 1.3 13
Tentative Flip 47.6 49.7 47.2 1.6 15.6 148

MakePermanent 320.9 1238.8 9374.4 0.1 2.2 163_ __
Total 3.9 38.7 518_ __ 
















































































































TABLE 3.3. Times on an VAX 8550 for Tour operations.

the IRIS. These distinctions are significant, as variance analysis implies that the averages

reported here are probably within ±3% of the true values (based on 95% confidence inter-

vals).

Note that the comparison between Two-Level Trees and Segment Trees is some-

what problematic, given that the two are embedded in slightly different versions of the

Lin-Kernighan algorithm, one with no bound on the length of a sequence of Flips, and

one with a bound of 50. This does not appear to be the source of the running time dis-

tinctions we have made, however. When we impose the bound of 50 on the Two-Level

Tree representation, running times for random Euclidean instances change only by 2-4%,

which is not a significant difference in this context.

For the RISC-based SPARCstation results (Table 3.4) one sees much the same qual-

itative behavior as we saw for the IRIS. The SPARCstation seems to be susceptible to

the same cache-miss problem we discussed for the IRIS, although perhaps not as badly.

Note that although the SPARCstation results tend to be slower than those for the IRIS for

N = 1 , 000, they are significantly faster for N = 100 , 000. This effect seems to benefit Seg-

ment Trees more than Two-Level Trees, so that the lead of the latter over the former at

N = 100 , 000 on the IRIS shrinks considerably.

www.manaraa.com

- 28 -

_ __
µSec per Call Total Seconds_ __

N 103 104 105 103 104 105_ ___ __
Array: Next + Prev 1.0 1.3 1.3 0.2 2.0 20

Between 2.0 1.9 2.3 0.0 0.4 4
Flip 22.3 127.7 642.1 1.4 79.9 3876_ __

Total 1.6 82.3 3900_ ___ __
Splay Tree-0: Next + Prev 5.9 7.1 7.9 1.0 11.3 125

Between 16.2 18.5 21.2 0.8 3.7 42
Flip 12.3 13.4 14.2 0.4 8.4 87_ __

Total 2.2 23.4 254_ ___ __
Two-Level Tree: Next + Prev 0.9 1.1 1.2 0.2 1.8 20

Between 3.0 3.3 3.6 0.1 0.7 7
Flip 11.9 14.3 23.8 0.8 8.9 145_ __

Total 1.1 11.4 172_ ___ __
Segment Tree: Next + Prev 3.1 3.3 3.5 0.5 5.1 52

Between 1.6 2.1 2.2 0.0 0.4 4
Tentative Flip 13.9 14.5 15.4 0.5 4.6 47

MakePermanent 120.6 726.6 4734.5 0.0 1.3 81_ __
Total 1.0 11.4 184_ __ 
















































































































TABLE 3.4. Times on an SPARCstation ELC for Tour operations.

One general conclusion that one can draw from Tables 3.2 through 3.4 is that the

relative efficiencies of the Tour representations are indeed machine-dependent. To get a

more direct view of this difference, and perhaps a better insight into the asymptotics of

our implementations, see Table 3.5. This table presents the average overall running

times, normalized by dividing through by N, for Splay Tree-2, Splay Tree-0, and our

other three Tour representations on all three machines. The first row of times presents

the initial time spent by the algorithm before the Tour representation code is invoked

(initial preprocessing plus the construction of the starting tour). The remaining rows give

the time spent in local optimization, the phase in which the Tour representation code is

active.

Note that all our new representations are significant improvements over Arrays in

the range from 10,000 to 100,000 cities, offering major speedups in the latter case. For a

million cities, extrapolations suggest that Arrays would have taken over 150 hours on the

IRIS, as compared to less than three for Splay Trees and Two-Level Trees. The overall

times (including preprocessing) for a million cities were 2.62 hours for Two-Level Trees,

2.70 hours for Splay Tree-0, 2.88 hours for Splay Tree-2, and 4.60 hours for Segment

Trees. As to trends in the data, it is clear that Segment Trees have run out of gas by the

www.manaraa.com

- 29 -

_ __
(Running Time in Milliseconds)/N_ __

VAX-8550 SPARCstation ELC IRIS 4D/250
N 103 104 105 103 104 105 103 104 105 106_ ___ __

Preprocessing 5.0 5.4 6.0 1.6 1.9 2.1 1.3 1.6 2.1 2.7_ __
Array 7.4 18.0 87.7 2.6 9.4 40.3 2.2 6.5 57.3 -

Splay Tree-2 13.4 14.1 15.5 4.3 4.6 4.9 3.7 4.7 5.9 7.6
Splay Tree-0 10.9 13.2 12.8 3.1 3.3 3.6 2.8 3.8 5.1 7.0

Two-Level Tree 7.4 7.7 9.1 2.0 2.2 2.9 1.9 2.8 3.6 6.7
Segment Tree 7.2 7.2 8.7 2.0 2.1 2.9 2.0 2.6 4.2 13.9_ __ 































































TABLE 3.5. Overall running times for Tour representations (Normalized).

time N = 106 . The Two-Level Tree representation is also beginning degrade, although

not nearly as catastrophically. Its normalized time goes up by a factor of almost two as N

increases from 100,000 to 1,000,000, while our normalized Splay Tree times go up by

less than 40%. Indeed, it seems likely that Splay Trees will be the representation of

choice as soon as N gets much larger than 106 .

3.3. Comparisons on ‘Real World’ Instances

So far we have reported results only for random Euclidean instances. It has been

observed for many optimization problems that random instances bear almost no relation

to instances arising in the ‘‘real world,’’ but this is fortunately not the case for the TSP.

Lessons learned from random Euclidean TSP instances do give insight into algorithmic

behavior on more realistic geometric instances, although the correspondence is of course

not complete. In this section we shall compare our results for random Euclidean

instances to those we obtained on more realistic instances from Gerd Reinelt’s TSPLIB

[27], currently the best public domain source of real-world instances, available via

anonymous FTP from softlib.rice.edu. Most of the instances in this collection

are too small (5000 or fewer cities) for the issues we are studying here to have major

impact. There is, however, a set of three related instances that range from 7397 to 85,900

cities. These are identified as pla7397, pla33810, and pla85900 in TSPLIB, and arose in

an AT&T application in which a laser was used to customize programmable logic arrays.

Table 3.6 presents a comparison between our result for these pla instances and our

already reported results for random Euclidean instances. The entries in the table are all

expressed as ratios of the results for the pla instances (lengths, counts, times) to extrapo-

lations of what the corresponding results for random Euclidean instances of the same size

would be. The top of the table corresponds to the top of Table 1.2 for random Euclidean

instances. It presents the ratios for the average length of the shorter segment when a Flip

www.manaraa.com

- 30 -

_ ___
N 7397 33810 85900 7397 33810 85900_ __ ___

Shorter Segment (Ratio) 1.4 1.7 2.2_ ___
Number of Next + Prev 9.4 11.3 8.0

Calls Between 0.7 0.6 0.4
(Ratio) 





Flip 3.2 3.7 2.7_ __ ___
IRIS 2D/450 VAX 8550_ ___

Array_ ___
Time per Call Next + Prev 1.0 0.8 0.6 0.9 0.9 0.8

(Ratio) Between 0.9 0.8 0.7 1.1 1.0 1.0






Flip 1.8 1.3 1.4 1.3 1.7 1.6_ ___
Total Time for Tour Ops. (Ratio) 4.7 2.1 3.3 3.1 2.8 4.0_ __ ___

Splay Tree-0_ ___
Time per Call Next + Prev 1.2 1.0 0.8 0.8 0.8 0.7

(Ratio) Between 1.0 0.9 0.8 0.9 0.8 0.9






Flip 1.3 1.3 1.2 1.1 1.1 0.7_ ___
Total Time for Tour Ops. (Ratio) 6.1 5.8 4.5 5.2 6.5 3.8_ __ ___

Two-Level Tree_ ___
Time per Call Next + Prev 0.6 0.5 0.5 0.9 1.0 0.9

(Ratio) Between 0.8 0.7 0.7 0.9 0.8 0.9






Flip 0.9 1.0 1.1 1.2 1.3 1.5_ ___
Total Time for Tour Ops. (Ratio) 2.4 3.4 3.4 3.7 4.8 4.0_ __ ___

Segment Tree_ ___
Time per Call Next + Prev 0.9 0.9 0.8 0.9 0.9 0.9

(Ratio) Between 0.9 0.7 0.7 0.8 1.0 1.0
Tentative Flip 1.2 1.2 1.2 1.0 1.5 1.1







MakePermanent 1.1 1.3 1.3 1.0 2.0 2.1_ ___
Total Time for Tour Ops. (Ratio) 4.4 3.0 2.1 4.6 4.8 2.9_ ___ 
































































































































































TABLE 3.6. Comparison of results for pla instances to extrapolated results for random
Euclidean instances of the same size.

is performed and the number of calls to the Tour operations under the Array, Splay Tree,

and Two-Level representations. (Segment Trees, because they are used in a modified

version of the algorithm, have fewer calls to Flip and Next / Prev, although their other

overheads typically counterbalance this saving.) In computing the ratios here, we used

the extrapolations that for random Euclidean instances the shorter segment length grows

at approximately 0. 38N .67 , and that the Next/Prev, Between, and Flip call counts grow as

roughly 160N, 20N, and 62N, respectively. These are rough approximations, and we

only compute the ratios to the nearest tenth, but this is enough to give a general sense of

the differences between instances. Note that for these instances the number of calls to

Next/Prev goes up by an average factor of roughly 10 over the number for random

www.manaraa.com

- 31 -

Euclidean instances, whereas the number of calls to Flip goes up by a factor of 3, and the

number of calls to Between goes down. This situation would seem to bode worst for our

Splay Tree representation, which has by far the most expensive Nexts and Prevs. On the

other hand, the length of the shorter segment on Flips also goes up significantly (although

the actual average length still seems to be growing sublinearly with N). This should neg-

atively affect our Array representation and (to a lesser extent) the Two-Level Tree repre-

sentation and (in its MakePermanent operation) the Segment Tree representation.

The actual effects on the representations are summarized in the rest of the table,

which reports results for all four representations, and for our two most disparate

machines (the IRIS 2D/450 and the VAX 8550). Here the numerators of the ratios for

each pla instance are averages over 6 runs on the IRIS and 3 runs on the VAX, and the

denominators are derived from our data on random Euclidean instances by simple linear

interpolation (between the results for N = 1000 and N = 10 , 000 for pla7397, and between

the results for N = 10 , 000 and N = 100 , 000 for pla33810 and pla85900). Again, these

are very rough estimates, but enough to give some feeling for behavior. Note that in

most cases the times per operation do not differ greatly from those for the random

instances. Times for Next, Prev, and Between are often slightly faster, increasingly so as

the instances get larger, and times for Flip are typically slower, but rarely is the differ-

ence as much as a factor of 2. (The reason that the ratios for Next, Prev, and Between

tend to decrease as N increases is that for these instances those operations tend to take the

constant time predicted by theory, rather than the slowly growing time observed for our

random Euclidean instances.) Consequently, the main reason for the major increases in

the total time spent on Tour operations reported in the table is simply that many more

Tour operations are being performed.

The net effect of all these contending factors in revealed in Table 3.7, which reports

overall running times (not normalized) for the three instances, two machines, and four

Running Time in Seconds___

IRIS 4D/250 VAX-8550
N 7397 33810 85900 7397 33810 85900__

Preprocessing 11 53 142 39 180 499___
Array 221 3390 15885 463 7432 30228

Splay Tree-0 148 796 1646 498 2854 4300
Two-Level Tree 53 414 1014 249 1745 3465

Segment Tree 77 434 835 251 1571 2389___ 














































TABLE 3.7. Overall running times for pla instances.

www.manaraa.com

- 32 -

representations. As in the random Euclidean case, the competition is between Two-Level

Trees and Segment Trees, with Splay Trees far back and Arrays out of the running. Note,

however, that for these instances Segment Trees outperform Two-Level Trees on the

larger instances even on the IRIS. Further experiments indicate, however, that this gain

is entirely the result of the modification one has to make in the Lin-Kernighan algorithm

in order to use the Segment Tree representation (the imposition of a bound of 50 on the

length of an allowable sequences of Flips). For these instances, if one imposes the same

bound of 50 while running the Two-Level Tree representation, one obtains a significant

speedup, more than enough to put the Two-Level Tree representation back in the lead.

There is a price to pay for this speedup in either case, however: the average length of the

resulting tour increases by roughly 0.2%, significant when as here the tours are already

within 2-3% of the Held-Karp lower bound. (Recall that such an increase was not

observed in the random Euclidean case.) One possible explanation is that for these

instances the number of improving sequences of Flips longer than 50 in unconstrained

Lin-Kernighan is 2-3%, whereas it is less than 1% in the random Euclidean case.

3.4. Comparisons for Random Distance Matrices

As our final set of test instances, we consider a type of instance that is about as far from

‘‘real world’’ as possible: random distance matrices. These are instances in which each

inter-city distance is chosen independently from a uniform distribution on [0,1]. Note

that such instances do not obey the triangle inequality, and indeed lack all the correla-

tions one might expect from instances that arise in practice. They are, however, a sub-

stantial challenge to our Tour representations and are interesting for that reason. For this

class of instances we restricted our main tests to the IRIS 2D/450. We considered values

of N that grew by factors of √ 10 from 1,000 to 31,623 (two instances for each size). The

instances were generated in such a way that the Θ(N 2) inter-city distances did not need

to be explicitly stored (which would have been impossible even for our IRIS when

N = 31 , 623). Distances were instead generated on the fly in a reproducible way, using a

special random number generator that took three seeds, one identifying the instance and

the other two corresponding to the cities whose distance was being computed (see [3] for

a description). Our results are averages over 10 runs on each of the instances except for

those of the largest size, where we average over 3 runs. This yields confidence intervals

of roughly ±4%.

Table 3.8 presents results analogous to those of Table 3.6 for the pla instances, with

entries expressed as ratios to the corresponding results (or extrapolated results when

N = 3 , 162 or N = 31 , 623) for random Euclidean instances of the same size. Note that the

number of calls to Prev/Next and to Flip are here higher than for random Euclidean

www.manaraa.com

- 33 -

_ ___
N 1,000 3,162 10,000 31,623_ __ ___

Shorter Segment (Ratio) 6.4 9.4 14.7 20.1_ ___
Number of Next + Prev 1.1 1.5 2.0 2.7

Calls Between 0.7 0.7 0.8 0.8
(Ratio) 





Flip 1.4 1.7 2.0 2.4_ __ ___
IRIS 2D/450_ ___

Array_ ___
Time per Call Next + Prev 1.0 1.5 1.8 -

(Ratio) Between 1.0 1.4 1.6 -






Flip 5.6 10.2 14.0 -_ ___
Total Time for Tour Ops. (Ratio) 6.9 8.2 26.6 -_ __ ___

Splay Tree-0_ ___
Time per Call Next + Prev 1.3 1.6 2.3 3.8

(Ratio) Between 1.5 1.8 2.3 3.5






Flip 1.5 1.8 2.2 3.1_ ___
Total Time for Tour Ops. (Ratio) 1.6 2.2 4.0 7.1_ __ ___

Two-Level Tree_ ___
Time per Call Next + Prev 1.3 1.4 1.9 2.8

(Ratio) Between 1.2 1.1 1.3 1.7






Flip 2.2 2.5 4.2 7.4_ ___
Total Time for Tour Ops. (Ratio) 1.9 2.8 6.5 12.2_ __ ___

Segment Tree_ ___
Time per Call Next + Prev 1.1 1.7 2.0 2.5

(Ratio) Between 1.4 1.2 1.5 1.8
Tentative Flip 1.1 1.4 1.8 1.8







MakePermanent 18.5 34.7 50.6 57.2_ ___
Total Time for Tour Ops. (Ratio) 1.5 2.6 5.0 6.7_ ___ 
























































































































TABLE 3.8. Comparison of results for random distance matrices to extrapolated
results for random Euclidean instances of the same size.

instances, and are growing at a faster (and hence superlinear) rate. The average length of

the shorter segment in Flips is also growing much faster. Indeed, for these instances the

average length of the shorter segment is extremely close to the N /4 value predicted in

Section 1, and thus it grows much more rapidly than the sublinear rates we saw for ran-

dom Euclidean instances and for pla instances. Turning to the behavior of the four repre-

sentations, we see that all are losing ground to their performance on random Euclidean

instances as N increases, both with respect to time per operation and to overall time for

operations. In the case of Splay Trees, this is presumably because random distance

matrices don’t provide nearly as much locality of reference for the splay operations to

capitalize on. Lack of locality of reference may also be one reason why the other repre-

www.manaraa.com

- 34 -

sentations are degrading, although here it would be because of increasing probability of

cache-misses, a machine-dependent factor. (Limited experiments on the VAX-8550 sug-

gest this is the case. For the latter machine the time per Next/Prev and Between opera-

tions under Array, Two-Level Tree, and Segment Tree representations remained rela-

tively constant from N = 1 , 000 up to N = 10 , 000, the largest random distance matrix

which that machine could reasonably handle.)

The results for Flip provide the most insight. As could be expected from the aver-

age length of the shorter segment, the Array representation degrades substantially more

rapidly as N grows than it did for the random Euclidean instances (and it was already

degrading rapidly for those). This effect is also seen for Two-Level Trees, where the cost

of a Flip in our implementation is also dependent on the length of the shorter segment,

especially when we fix groupsize at 100, as we did for these experiments. The significant

jump in the time per operation as we go from N = 10 , 000 to N = 31 , 623 suggests that a

bigger value for groupsize might have yielded better results for instances of the latter

size. The one other operation that is affected by the increased shorter segment length for

these instances is the MakePermanent operation under Segment Trees. Here the effect is

by far the greatest, suggesting that our decision always to implement the operation by

doing Flips in the permanent tour may be misguided for this type of instance. We thus

re-ran the experiments using a hybrid scheme in which MakePermanent operation was

implemented using Flips only if 20 or fewer flips were needed. If more than 20 flips

were needed, MakePermanent was implemented by rebuilding the permanent tour from

scratch based on the segment list. Using this threshold each method was called about the

same number of times (to within a factor of 2) and took roughly the same time per opera-

tion. Moreover, as seen below, the overall time for Tour operations was significantly

reduced for the larger instances.

IRIS 4D/250 Running Time in Seconds___

N 1,000 3,162 10,000 31,623__
Preprocessing 4.6 45.4 465 4651___

Array 10.0 115.1 1371 -
Splay Tree-0 4.7 24.7 144 918

Two-Level Tree 4.0 20.3 138 900
Segment Tree 3.2 19.2 116 777

Segment Tree+ 3.3 18.1 96 658___ 



































TABLE 3.9. Overall running times for random distance matrices.

www.manaraa.com

- 35 -

Table 3.9 summarizes the overall running time results for the various Tour represen-

tations on random distance matrices, with a separate entry (Segment Tree+) for Segment

Trees using the hybrid MakePermanent operation. Note that for these instances Two-

Level Trees are barely better than Splay Trees, although Arrays are far behind both. Seg-

ment Trees are the clear winner in the range up to N = 31 , 623, with the hybrid MakePer-

manent scheme to be preferred. (This despite the fact that for these instance, bounding

the length of Flip sequences at 50, as we do for Segment Trees, actually slows the algo-

rithm down a bit, rather than speeding it up as it did for the pla instances.) Extrapolating

the growth of MakePermanent work, however, even under the hybrid scheme, suggests

that Segment Trees could well lose out to Splay Trees at N = 100 , 000, should we ever

have cause to try random distance matrices that large. Note, however, that the real bottle-

neck for our Lin-Kernighan code here is not the Tour operations but the preprocessing.

For instances with uncorrelated distances, as we have here, the preprocessing phase must

look at all pairs of cities and hence must take time Ω(N 2), as opposed to roughly linear

time on our Euclidean instances (random and pla-based). Thus the total time for the

algorithm is so dominated by the preprocessing time that the relative difference in overall

running time attributable to our choice of Tour representation is quite minor (assuming

we do not choose Arrays).

4. Lower Bounds

In this section, we show that the Splay Tree implementation of the Tour datatype is

almost the best possible (in an asymptotic worst-case sense), by proving that any Tour

representation must take amortized time Ω(logN /log logN) per operation in the worst

case. We prove our amortized lower bounds in the cell probe model of computation,

introduced by A. Yao [30] (see also [8]). In this model there is a single parameter b, the

number of bits in single word of shared memory, and the cost of a computation is essen-

tially the number of words accessed. This is a very general model, encompassing even

such baroque data structures as the fusion trees of [9]. Our proof relies on a rather tech-

nical generalization of Theorem 3 ′ from [8], and we shall state this generalization here

without proof, calling it Theorem A. The proof of Theorem A, itself a straightforward

generalization of the proof of Theorem 3 ′ in [8], will be included in the journal version of

that paper, and in the meantime is available from the authors.

We will not be applying Theorem A directly to our problem, but rather to a mathe-

matically simpler problem that we can show reduces to our problem in a two-stage pro-

cess. The first step in formalizing these reductions is the following definition.

www.manaraa.com

- 36 -

Definition. A dynamic query problem is a quadruple (S ,S 0 ,Q , U), where S is a

finite state space, S 0 ∈ S is distinguished start state, Q is an ordered finite set of query

operations Q: S → { 0 , 1 }, and U is a finite set of update operations U: S → S. A solu-

tion to a dynamic query problem is an on-line algorithm for maintaining the current state

while supporting the update and query operations. (The update operations change the

state, whereas the query operations return an answer but leave the state unchanged.)

Note that no assumption is made about the manner in which states are to be represented

or whether there are multiple representations of a given state. Also, we do not preclude

the possibility that the implementation of a query operation may change the representa-

tion of the current state.

The reductions in our lower bound proof involve the Reversible String problem, a

dynamic query problem that is defined as follows. The states are all permutations of a

length-N string s 0 consisting of N distinct symbols. Let Σ be the corresponding N-

symbol alphabet. Queries are of the form Precedes(x ,y), where x ,y ∈ Σ. The answer to

Precedes(x ,y) applied to string s is defined to be 1 if and only if y is the immediate suc-

cessor of x in S. Updates are of the form Reverse(x ,y) and cause the current string S to

be modified by reversing the substring of S that runs between symbols x and y (inclusive).

It is not difficult to show that any implementation of the Tour datatype can be

adapted to solve the Reversible String problem. More specifically, any sequence of m

operations for the latter problem can be implemented by a sequence of at most 4m Tour

operations plus O(m) additional computation. The string can be turned into a tour by

considering each symbol to be a city, and adding two additional cities c and d, where c

and d will always be linked together, c will always in addition be linked to the first sym-

bol in s, and d will always be linked to the last symbol in s. See Figure 4.1. We will then

have that Precedes(x ,y) = 1 if and only if either (a) Next(d) = c and Next(x) = y, or (b)

Next(d) ≠ c and Prev(x) = y. Thus Precedes(x ,y) can be implemented with two calls

to Prev/Next. Reverse(x ,y) is a bit more complicated, but can be done with two

Prev/Next’s, one Between, and a Flip, as follows: If x = y, nothing need be done. If x

and y are distinct, ask a Between(c ,x ,y) query. If the answer is yes, let u = Prev(x),

v = Next(y), and perform Flip(u ,x ,v ,y). Otherwise, let u = Prev(y), v = Next(x), and

perform Flip(u ,y ,v ,x).

Thus if we can show that the Reversible String problem requires worst-case amor-

tized time Ω(logN /log logN) per operation, the same conclusion will follow for our Tour

datatype. To show that the conclusion holds for the Reversible String problem, we will

use the latter to solve yet a third problem, the Bit-Vector Complementation problem.

Theorem A will then be used to show that this last problem has the required lower bound.

www.manaraa.com

- 37 -

a1, b1, a2, b2, a3, b3, a4, b4

c d

a1

b1

a2

b2

b4

a4

a3

b3

FIGURE 4.1. Correspondence between the Reversible String problem and the Tour datatype.

The Bit-Vector Complementation problem is a dynamic query problem defined as

follows. The state set S consists of all length-M binary strings, where M = 2k for some

fixed k. The start state S 0 is the all-1 vector. The set Q of query operations consists of

one query Q[i] for each integer i, 1 ≤ i ≤ M. The answer to query Q[i] for a given string

S is simply the value of the ith bit of S. The set U of update operations contains one

update U[h , j] for each pair of integers h , j such that 0 ≤ h ≤ k and 1 ≤ j ≤ 2k − h =

M /2h , where update U[h , j] says to complement the bits in positions (j − 1) 2h + 1

through j2h . For instance, U[0 , j] says to complement the jth bit, U[k , 1] says to com-

plement the entire string, and U[3 , 4] says to complement the bits in positions 25 through

32. For technical reasons we also include a vacuous update U[0], whose effect is to

leave the current bit-vector unchanged, for an overall total of 2 M update operations. In

what follows it will be useful to think of each update operation U[h , j] as corresponding

to a binary vector σ U[h , j] which has 1’s only in positions (j − 1) 2h + 1 through j2h .

(The vector σ U[0] will by definition be the all-zero vector.) An update can then be per-

formed simply by adding the corresponding binary vector to the current vector S (mod 2).

Note that the update operations are all nicely nested: the domains of two updates (in

terms of positions of S effected) are either disjoint or else one is entirely contained in the

other.

Let us now show how the Bit-Vector Complementation problem can be reduced to

the Reversible String problem, so that each operation of the former is transformed into

one operation of the latter, with only a constant amount of additional overhead per opera-

tion. The idea is to model the length-M bit vector by a length-(4M − 2) string, con-

structed as follows. Our alphabet Σ will consist of symbols e h , j , f h , j for each of the

2M − 1 non-vacuous update operations U[h , j]. The initial string S 0 is constructed hier-

archically out of subsegments as follows. There are M level-0 segments T 0 , j , 1 ≤ j ≤ M,

www.manaraa.com

- 38 -

where T 0 , j = e 0 , j f 0 , j . Inductively, for each h, 1 ≤ h ≤ k, there are 2k − h level-h seg-

ments T h , j , 1 ≤ j ≤ 2k − h , where T h , j = e h , j T (h − 1) , (2 j − 1) T (h − 1) , (2 j) f h , j . The initial

string S 0 = T k , 1 . Note that this hierarchical structure reflects the nesting property of the

strings σ U[h , j] that we associated with the update operations in the Bit-Vector Comple-

mentation problem.

In our simulation, each time an update operation U[h , j] is to be performed on the

current bit-vector, we instead perform the update operation Reverse(e h , j , f h , j) on the

current string. For the vacuous update operation U[0], we simply perform the vacuous

reversal Reverse(e 0 , 1 ,e 0 , 1). These will be the only Reversible String updates we per-

form. Note that this means that each symbol pair e 0 ,i , f 0 ,i will always remain adjacent,

although the relative order of the two symbols may be reversed. In particular, the relative

order will be reversed every time we perform an update operation Reverse(e h , j , f h , j)

where the corresponding U[h , j] complements bit i of the vector, and these are the only

updates that will reverse it. Thus the order of the pair in the current string will be

e 0 ,i , f 0 ,i if and only if the ith bit in the current bit vector is 1, and we can obtain the

answer to the Bit-Vector query Q[i] simply by asking the Reversible String query

Precedes(e 0 ,i , f 0 ,i).

This completes the description of our simulation. Note that for any sequence of p

update and query operations in the Bit-Vector Complementation problem for a vector of

length M, our simulation performs precisely the same number of operations in a

Reversible String problem for a string of length 4 M − 2. The additional work needed per

operation to perform the translations will be bounded by a small constant, assuming our

computer has word size at least Ω(logM). Thus if the Bit-Vector Complementation

problem requires amortized time Ω(logM /log logM) per operation, our Reversible String

problem will require amortized time at least Ω(logN /log logN) per operation, which is

what we are trying to prove.

We are now almost ready to state Theorem A and prove our lower bound. First,

however, we need two technical definitions.

Definition. Let ∆ = (S ,S 0 ,Q , U) be a dynamic query problem, and let F h ⊆ Uh be

a collection of update sequences of length h. Let M = Q. For any state S ∈ S and for

each sequence λ in F h let λ(S) be the state obtained by starting with S and sequentially

applying the h update operations of λ. For any state S, let v S ∈ { 0 , 1 }M be the M-

dimensional binary vector determined by the responses to the M queries in Q from the

state S. Let δ denote the Hamming distance function between vectors. For positive real

numbers γ and ρ we say that F h is (γ , ρ)-dispersing provided that for all u ∈ { 0 , 1 }M

and all S ∈ S, {λ ∈ F h : δ(v λ(S) ,u) ≤ γM} ≤ F h/2ρh .

www.manaraa.com

- 39 -

Intuitively, this definition asserts (when γ < 1) that the update sequences in F h

have sufficiently varying impact so as to prevent clustering of the query responses. Note

that for the Bit-Vector Complementation problem, v S simply equals S.

Definition. Let ∆ = (S ,S 0 ,Q , U) and let M = Q. Let F ⊆ Um be a collection of

update sequences of length m having the product form F = F 1 F 2
. . . F m , where each

F j ⊆ U. Given a positive integer t we say that F is (t , γ , ρ)-dispersed if the following

holds. For all pairs of integers i ,h satisfying i ≥ 1, t ≤ h ≤ √ M , and i + h − 1 ≤ m, the

set F[i ,i + h − 1] = F i F i + 1
. . . F i + h − 1 is (γ , ρ)-dispersing.

Theorem A. Let ∆ = (S ,S 0 ,Q , U) be a dynamic query problem, let M = Q, and

let F be a set of length-m update sequences for ∆ that is (t ,γ ,ρ)-dispersed, where

m ≥ 2√ M , t ≤ M 1/4 and ρ ≥ (log M) − κ . Let H be the set of all sequences of opera-

tions of the form U 1 Q 1
. . . U m Q m , where the Q i ∈ Q and the update subsequence

(U 1
. . . U m) ∈ F. Let A be an on-line algorithm for ∆ in the cell probe model of com-

putation with b-bit word size, where b ≤ (log M) κ . Then for at least one sequence

α ∈ H, A performs Ω(γ .m.log M /(κ log log M)) memory accesses when executing the

operations in α.

In applying Theorem A to the Bit-Vector Complementation problem, we shall

restrict attention to sequences of operations having the form

u 1 u 2
. . . u m , m ≥ √ M (4.1)

where each sequence is derivable from a special sequence

Γ = U 1 U 2
. . . U m (4.2)

in that for each i, 1 ≤ i ≤ m, u i must either equal U i or be the vacuous update U[0]. In

other words, the set of sequences in which we will be interested is the concatenation F =

F 1 F 2
. . . F m , where F i = {U i ,U[0]}, 1 ≤ i ≤ m.

The sequence Γ is structured as follows. We partition Γ into k (non-contiguous)

subsequences Γ h , 1 ≤ h ≤ k, where subsequence Γ h consists of those U i with index

i ≡ h(mod k). Focusing on subsequence Γ h , the operations comprising this subsequence

systematically cycle through the updates U[h , j], 1 ≤ j ≤ 2k − h . If we define the weight

of an update U[h , j] to be the number of 1’s in the corresponding vector σ U[h , j] , this

means that the updates in Γ h all have weight 2h .

The following two lemmas will make it possible to apply Theorem A. Given a

binary vector σ, the 1-components of σ refers to the set of components for which σ has

the value 1.

www.manaraa.com

- 40 -

Lemma 4.1. Suppose k = log M ≥ 2. Given a sequence L of consecutive update

operations in the sequence Γ, k ≤ L ≤ M, there exists a subsequence L ′ with

L ′ > L/(2k) such that all update operations in L ′ have the same weight ω,

L
Mk_ ___ ≤ ω <

L
2Mk_ ____ , (4.3)

and such that the 1-components of the vectors associated with the operations in L ′ are all

disjoint.

Proof. Given that the upper and lower bounds in (4.3) differ by a factor of 2, there is

a unique weight ω = 2h that satisfies those bounds. The sequence Γ will contain update

operations of this weight so long as 1 ≤ h ≤ k. We have h ≤ k by (4.3) since L ≥ k by

hypothesis and k = log M by definition. We have h ≥ 1 since L ≤ M and k ≥ 2 by

hypothesis. Let L ′ be a set of M /ω consecutive members of Γ h contained in L. (Note

that M /ω is an integer since M = 2k .) We know that there are enough members of Γ h in

L for this selection to be made since M /ω ≤ L/ k by the first inequality in (4.3). The

second inequality in (4.3) then tells us that L ′ = M /ω > L/(2k), as desired. Finally,

taking into consideration the cyclic construction of the Γ h and the fact that L ′ = M /ω,

it is easy to see that the 1-components of the vectors associated with the operations in L ′
are all disjoint, our final requirement.

Lemma 4.2. Let σ 1 , . . . , σ s , s ≥ 1, be M-dimensional binary vectors having com-

mon Hamming weight ω ≥ M /(2s), and assume that the 1-components of these vectors

are all disjoint. Let u be any fixed M-dimensional binary vector. Then at most 2 .95s of

the 2s vectors spanned by the σ j (sums taken (mod 2)) fall within Hamming distance

M /12 of u.

Proof. Let Λ denote the space spanned by the σ j . Let û = Σ i α i σ i denote the vec-

tor in Λ closest to u in terms of Hamming distance, and let x = Σ i β i σ i be an arbitrary

vector in Λ other than û. Let δ be the Hamming distance between the respective

coefficient vectors, (α 1 , . . . , α s) and (β 1 , . . . , β s). Note that the Hamming distance

between û and x is consequently δ ω. Since u is closer to û than to x, the triangle inequal-

ity implies that the Hamming distance between x and u is at least half that between x and

û and hence is at least δ ω/2 ≥ δM /(4s). Thus, in order for x and u to be within distance

M /12, δ cannot exceed s /3. Hence, the number of x in Λ within distance M /12 of u does

not exceed the number of binary s-dimensional vectors of Hamming weight at most s /3.

This number is easily estimated using Stirling’s formula and does not exceed 2 .95s , com-

pleting the proof.

www.manaraa.com

- 41 -

We are now ready to state and prove our lower bound result for the Bit-Vector

Complementation problem.

Theorem 4.1. Suppose M ≥ 100 , 000 and let A be any on-line algorithm that solves

the Bit-Vector Complementation problem in the cell probe model of computation with

word size no larger than some fixed power of log M. Given any m > 2√ M , there exists

a sequence of m operations for which A performs Ω(m.log M /log log M) memory

accesses during the course of executing these operations.

Proof. Let κ be such that the word size is bounded by (log M) κ . We may assume

without loss of generality that κ ≥ 2. 5. Let F be the set of length-m update sequences

patterned by (4.1). We shall show that F is (t ,γ ,ρ)-dispersed, with t = k, γ = 1/12 and

ρ = .025/ k. The other hypotheses of Theorem A will also apply: m > 2√ M by

definition, t ≤ M 1/4 if M ≥ 100 , 000 since t = k = log M, and ρ = .025/ k =

.025/(logM) > (logM) − κ for all κ ≥ 2. 5 when M ≥ 100 , 000. Consequently, Theorem

A will apply and imply the claimed result.

To show that F is (t ,γ ,ρ)-dispersed, we first recall that it has the correct format as a

product F 1 F 2
. . . F m , where the F i are based on the sequence Γ of (4.2), and each

contains two elements. Consider a sequence L of consecutive update operations from Γ,

where t ≤ L ≤ √ M , say the one starting at position i and extending to position

i +L− 1. Let F[i ,i +L− 1] be the product of the sets of updates corresponding to the

positions in Γ of the elements of L. We must show that F[i ,i +L− 1] is (γ ,ρ)-

dispersing. So let u be an arbitrary vector in { 0 , 1 }M , and let S be an arbitrary state in S.

We must show that the number of update sequences λ in F[i ,i +L− 1] such that v λ(S)

is within Hamming distance M/12 of u is at most F[i ,i +L− 1]/2 .025L/ k .

By Lemma 4.1, there is a subset L ′ ⊆ L of size s > L/(2k) such that all update

operations in L ′ have the same weight ω, Mk /L ≤ ω < 2Mk /L, and such that the 1-

components of the vectors associated with these updates are all disjoint. Let ψ denote

the set of positions in Γ corresponding to the operations in L ′, and let φ denote the posi-

tions in Γ corresponding to operations in L − L ′. Note that ψ = s. We now partition

F[i ,i +L− 1] into 2φ subsets, one for each way of choosing one member each from

the sets F i , i ∈ φ. The subsets are constructed as follows. We identify each way of

choosing the members with a function f :φ → { 0 , 1 }, and the subset corresponding to f

consists of the 2s sequences of the form u i u i + 1
. . . u i +L− 1 in F[i ,i +L− 1], where

u j =





U[0] or U j

U j

U[0]

j ∈ ψ
j ∈ φ and f (j) = 1

j ∈ φ and f (j) = 0

www.manaraa.com

- 42 -

Let G f be one such subset, and let us extend the correspondence between updates

and strings to arbitrary sequences of updates in the natural way. That is, if λ =

u 1 ,u 2 , . . . , u t , then σ λ is the vector sum of σ u 1
through σ u t

. As with individual

updates, the result λ(S) obtained by applying the operations of λ to a vector S is simply

the vector sum (mod 2) of S and σ λ . Since individual update operations commute, we

can also speak of σ X for a set X of operations, where σ X is the vector sum of the vectors

σ u for all u ∈ X. For each λ in G f , the corresponding vector σ λ can be viewed as the

vector sum σ λ ψ
+ σ λ φ

(mod 2), where λ ψ and λ φ are the sets of updates in ψ and φ

respectively. Now σ λ φ
is fixed for all members of G f by definition, whereas the vector

σ λ ψ
is not fixed, there being a different one for each member of G f . Let us denote this

set of vectors σ λ ψ
by V(ψ). We now apply Lemma 4.2, with the role of σ 1 , . . . , σ s

played by the vectors σ U j
, j ∈ ψ, and with the set of 2s vectors spanned by them being

simply V(ψ). Observe that the vectors in V(ψ) actually comprise an affine subspace.

The hypotheses of Lemma 4.2 are satisfied since we have s > L/(2k) and the common

Hamming weight of the s basis vectors (which have disjoint 1-components) is at least

Mk /L > M /(2s).

As a consequence of the Lemma, for each vector w, the number of vectors in V(ψ)

that are within distance M /12 of u = w + S + σ λ φ
(mod 2) is at most 2 .95s . This inequal-

ity will continue to hold if we translate all the vectors (including u) by a fixed vector, in

particular if we add S + σ λ φ
to each (mod 2). Adding S + σ λ φ

to the vectors in V(ψ)

yields {λ(S) :λ ∈G f} = {v λ(S) :λ ∈G f}, since recall that for the Bit-Vector Complemen-

tation problem, v S = S for all states S. Adding S + σ λ φ
to u yields w + 2σ S + 2σ λ φ

=

u(mod 2). Thus the number of strings λ ∈ G f such that v λ(S) is within M /12 of u is at

most 2 .95s . Consequently, the proportion of these vectors that are that close is at most

2 .95s /2s = 2 −. 05s < 2 −. 025L/ k . Since this holds true for all the sets G f , the desired

inequality holds. Hence F[i ,i +L− 1] is (γ ,ρ)-dispersing and F is (t ,γ ,ρ)-dispersed, as

claimed, yielding the theorem.

As an immediate corollary of Theorem 1, our simulation of the Bit-Vector Comple-

mentation problem by the Reversible String problem, and the method explained above

for solving the Reversible String problem in terms of the Tour datatype, we have our

desired lower bound result for the latter. Filling in the precise values of the derived con-

stants, the lower bound result for Tour operations can be stated as follows.

Theorem 4.2. Suppose A is any on-line algorithm that implements the Tour datatype

in the cell probe model of computation with word size no larger than some fixed power of

log N, where N is the number of cities. Then for all N > 400 , 000 and any m > 4√ N ,

www.manaraa.com

- 43 -

there exists a sequence λ of m Tour operations such that A performs

Ω(mlog N /log log N) memory accesses during the course of executing these operations.

5. Conclusions and Directions for Further Research

In this paper we identified the choice of Tour representation as a critical decision in the

implementation of local search heuristics for the traveling salesman problem. When N is

large, this choice can have a dramatic effect on the running time of algorithms such as

Lin-Kernighan. We suggested three alternatives to the traditional array-based representa-

tion of the tour, and analyzed each from both theoretical and experimental perspectives.

We also showed that asymptotically the best of these is the Splay Tree representation,

which has a worst-case O(log N) amortized cost per operation. This is near-optimal in

the sense that any Tour representation must have worst-case amortized cost

Ω(log N /log log N) per operation, assuming the general cell probe model of computa-

tion.

The major remaining theoretical open problem is to close the gap between these

upper and lower bounds. It is quite possible that a new representation with worst-case

amortized cost O(log N /log log N) per operation might exist, although we do not cur-

rently have any ideas about how to construct one. Note, however, that for N less than

four billion, log log N is no more than 5, so the potential savings over Splay Trees on

real-world instances would not be observable in practice unless the new representation

had little additional overhead. Even if it had significantly less overhead than Splay

Trees, the new representation could still lose out to them in practice, unless like them it

had a strong ability to take advantage of locality of reference in sequences of operations.

Moreover, even if the new representation actually beat Splay Trees in practice, it is still

not clear that it would be useful, since in our experiments on instances with as many as a

million cities, Splay Trees never turned out to be the Tour representation of choice.

Within this range of instance sizes, the real competition was always between our Two-

Level Tree and Segment Tree representations, with the former always outperforming

Splay Trees and the latter doing so for all but our million-city instance.

It should be noted, however, that all three representations significantly outperformed

the original Array representation, and so in this sense all can be judged successes. More-

over, one conclusion we might draw from our experimental results is that a robust imple-

mentation of Lin-Kernighan might need to include all the Tour representations we have

discussed. Arrays continue to be the structure of choice for instances with N < 1 , 000,

Two-Level Trees and Segment Trees each win by significant amounts on certain types of

instances, and Splay Trees seem likely to come into their own should we ever want to

www.manaraa.com

- 44 -

tackle a two- or three-million city instance. For someone designing a new implementa-

tion of Lin-Kernighan from scratch, however, and not wanting to go to the effort of

implementing more than one Tour representation, we would at this point recommend

Two-Level Trees as the fastest and most robust on instances that might arise in practice.

We should remind the reader, however, that since the running times in our experi-

ments for all the new representations tended to remain within a factor of two of each

other, they are well within the range where additional code-tuning and minor algorithmic

modifications might well have a major impact on the winners for particular problem

instances, and on the various crossover points between approaches. Consequently, the

results we have presented should for now be taken only as preliminary guides. There is

much further experimentation that could be done. Here are some questions that might be

addressed.

First, can the Two-Level Tree representation be improved by explicit rebalancing,

either by implementing the scheme we proposed in Section 2 or by some more-efficient

alternative? Based on our experiments and intuition, we expect not, but we may be

wrong. The only work so far along this line has been done by Chrobak et al. [7], who

report on limited experiments with a version of Two-Level trees that does have explicit

rebalancing, although it does not implement the Between query and so is not faced with

the problem of keeping that operation efficient without increasing the rebalancing cost.

Unfortunately, it is difficult to make comparisons based on their data since they only

measure performance on a sequence of random flips, rather than on the operation of the

representation during actual runs of an algorithm. Furthermore, the maximum value of N

they considered was 1,500.

Second, can the Segment Tree representation be improved by a better handling of

the MakePermanent operation? Applegate and Cook, in their implementation of this

approach [2], allow themselves to omit some of the MakePermanent operations, using an

out-of-date permanent tour as their reference array until the number of permanent flips

required to bring that reference tour up-to-date exceeds some threshold. This is espe-

cially important in their version of Segment Trees, since they always implement

MakePermanent using the Θ(N) process of rebuilding the permanent tour completely,

which as we have seen is not always the most efficient way to proceed. Moreover, in

order to allow the omission of MakePermanent operations, they need frequently to undo

entire sequences of tentative Flips in the tentative tour, being careful to merge segments

back together whenever possible. These operations significantly increase the total num-

ber of Flips performed, while slightly increasing the cost per Flip. We suspect that the

result of these compromises is a slower overall running time than for our version, but

www.manaraa.com

- 45 -

given that the Applegate-Cook version of Segment Trees is embedded in a different

implementation of the Lin-Kernighan algorithm, we have not yet had a chance to do a

direct comparison. Moreover, it is possible that some combination of the two versions,

using features derived from both, might be preferable to either. This would be an inter-

esting question to explore.

Third, is there a better way than Splay Trees to maintain the Tour at a cost of

O(log N) per operation? There are at least two alternative methods in the literature for

obtaining this asymptotic guarantee (although neither seems likely to be competitive with

Splay Trees in practice). Chrobak et al. [7] describe how to do this with AVL trees. (See

[1] for an introduction to AVL trees.) This AVL-tree approach has the theoretical advan-

tage that it yields O(log N) time per operation in a pure worst-case sense, rather than an

amortized worst-case sense. In the context of a full run of an algorithm like Lin-

Kernighan, however, such a distinction is meaningless, and the AVL-tree approach has

two key drawbacks. First, it is much more difficult to program than Splay Trees

(although not impossible, since Chrobak et al. implemented AVL-Trees and tested them

along with Two-Level Trees in [7]). Second, it does not have the capacity to take advan-

tage of locality of reference. Thus it is unlikely that this variant would prove competitive

in practice. Similar remarks can be made about a representation proposed by Margot

[24]. This representation uses a nested hierarchy of linked cycles that, from another point

of view, looks much like a binary tree with the cities located at leaves and with the ver-

tices at each level connected by doubly-linked cyclic lists. (The doubly-linked list at the

bottom level gives the tour.) Margot provides a method for performing Flips in this struc-

ture while keeping it roughly in balance, thus guaranteeing O(log N) time per operation.

(The Between operation is not considered in [24], but can also be implemented to run

within that time bound for this representation.) Margot’s representation has the same

defects as the AVL-tree approach: programming complexity and no natural capacity for

taking advantage of locality of reference. Thus it is unlikely that an implementation of

either of these two approaches would prove competitive, although it would be interesting

to see just how well they do perform.

Finally, given that our experiments have already shown that asymptotics may not be

relevant even for N as large as 106 , are there any completely new sorts of Tour represen-

tations that are worth considering for N bounded by this limit? This may well be the

most interesting question to pursue.

www.manaraa.com

- 46 -

References

1. A. V. AHO, J. E. HOPCROFT, AND J. D. ULLMAN, The Design and Analysis of Com-
puter Algorithms, Addison-Wesley, Reading, MA, 1974.

2. D. APPLEGATE AND W. COOK, private communication (1990).
3. J. L. BENTLEY, ‘‘Fast algorithms for geometric traveling salesman problems,’’ ORSA

J. Comput. 4 (1992), 387-411.
4. R. M. BRADY, ‘‘Optimization strategies gleaned from biological evolution,’’

Nature 317 (October 31, 1985), 804-806.
5. V. CERNY, ‘‘A Thermodynamical Approach to the Travelling Salesman Problem: An

Efficient Simulation Algorithm,’’ J. Optimization Theory and Appl. 45 (1985), 41-
51.

6. N. CHRISTOFIDES, ‘‘Worst-case analysis of a new heuristic for the travelling sales-
man problem,’’ Report No. 388, GSIA, Carnegie-Mellon University, Pittsburgh, PA,
1976.

7. M. CHROBAK, T. SZYMACHA, AND A. KRAWCZYK, ‘‘A data structure useful for
finding Hamiltonian cycles,’’ Theor. Comput. Sci. 71 (1990), 419-424.

8. M. L. FREDMAN AND M. E. SAKS, ‘‘The cell probe complexity of dynamic data
structures,’’ in Proceedings 21st Ann. ACM Symp. on Theory of Computing, Associa-
tion for Computing Machinery, New York, 1989, 345-354.

9. M. L. FREDMAN AND D. E. WILLARD, ‘‘BLASTING through the information theo-
retic barrier with FUSION TREES,’’ in Proceedings 22nd Ann. ACM Symp. on The-
ory of Computing, Association for Computing Machinery, New York, 1990, 1-7.

10. A. M. FRIEZE, ‘‘Worst-case analysis of algorithms for travelling salesman prob-
lems,’’ Methods of Operations Research 32 (1979), 97-112.

11. F. GLOVER, ‘‘Tabu search – Part I,’’ ORSA J. Comput. 1 (1989), 190-206.
12. M. HELD AND R. M. KARP, ‘‘The traveling-salesman problem and minimum span-

ning trees,’’ Operations Res. 18 (1970), 1138-1162.
13. M. HELD AND R. M. KARP, ‘‘The traveling-salesman problem and minimum span-

ning trees: Part II,’’ Math. Programming 1 (1971), 6-25.
14. D. S. JOHNSON, ‘‘Local optimization and the traveling salesman problem,’’ in Proc.

17th Colloq. on Automata, Languages, and Programming, Lecture Notes in Com-
puter Science 443, Springer-Verlag, Berlin, 1990, 446-461.

15. D. S. JOHNSON, D. L. APPLEGATE, AND E. E. ROTHBERG, ‘‘Asymptotic experimen-
tal analysis of the Held-Karp lower bound for the traveling salesman problem,’’ in
preparation.

16. D. S. JOHNSON, J. L. BENTLEY, L. A. MCGEOCH, AND E. E. ROTHBERG, ‘‘Near-
optimal solutions to very large traveling salesman problems,’’ in preparation.

17. S. KIRKPATRICK, ‘‘Optimization by simulated annealing: Quantitative studies,’’ J.
Stat. Physics 34 (1984), 976-986.

18. B. KORTE, ‘‘Applications of combinatorial optimization,’’ talk at the 13th Interna-
tional Mathematical Programming Symposium, Tokyo, 1988.

19. J. LAM AND J.-M. DELOSME, ‘‘An efficient simulated annealing schedule: imple-

www.manaraa.com

- 47 -

mentation and evaluation,’’ manuscript (1988).
20. F. T. LEIGHTON, private communication (1989).
21. E. L. LAWLER, J. K. LENSTRA, A. H. G. RINNOOY KAN, AND D. B. SHMOYS, The

Traveling Salesman Problem, John Wiley & Sons, Chichester, 1985.
22. S. LIN, ‘‘Computer solutions of the traveling salesman problem,’’ Bell Syst. Tech.

J. 44 (1965), 2245-2269.
23. S. LIN AND B. W. KERNIGHAN, ‘‘An Effective Heuristic Algorithm for the

Traveling-Salesman Problem,’’ Operations Res. 21 (1973), 498-516.
24. F. MARGOT, ‘‘Quick updates for p-opt TSP heuristics,’’ Operations Res. Lett. 11

(1992), 45-46.
25. O. MARTIN, S. W. OTTO, AND E. W. FELTEN, ‘‘Large-step Markov chains for the

traveling salesman problem,’’ Complex Systems 5 (1991), 299-326.
26. H. MU

..
HLENBEIN, M. GORGES-SCHLEUTER, AND O. KRA

..
MER, ‘‘Evolution algo-

rithms in combinatorial optimization,’’ Parallel Comput. 7 (1988), 65-85.
27. G. REINELT, ‘‘TSPLIB—A traveling salesman problem library,’’ ORSA. J. Com-

put. 3 (1991), 376-384.
28. D. D. SLEATOR AND R. E. TARJAN, ‘‘Self-adjusting binary search trees,’’ J. Assoc.

Comput. Mach. 32 (1985), 652-686.
29. R. E. TARJAN, Data Structures and Network Algorithms, Society for Industrial and

Applied Mathematics, Philadelphia, PA, 1983.
30. A. C. YAO, ‘‘Should tables be sorted?,’’ J. Assoc. Comput. Mach. 28 (1981), 615-

628.

